Ocean Acidification: Current & Planned Research at the AFSC Doug DeMaster Director, Alaska Fisheries Science Center

Ocean Acidification

- Dissolving CO2 increases the <u>hydrogen</u> ion (H+) concentration in the ocean, and thus reduces ocean pH.
- The use of the term "ocean acidification" to describe this process was introduced in Caldeira and Wickett (2003).
- Since the <u>industrial revolution</u> began, ocean pH has dropped by approximately 0.1 units, and it is estimated that it will drop by a further 0.3 - 0.4 units by 2100 as the ocean absorbs more anthropogenic CO2 (Caldeira and Wickett, 2003; Orr et al., 2005).

Ocean Acidification Issues

- We know the kinetics of OA pretty well
- Oversaturation is good! For aragonite, it is reduced with †depth, †pressure, ‡temperature, & ‡pH
- We know very little about how a given organism will "respond" to reductions in oversaturation of water with respect aragonite and calcite- need lab studies and field/process studies
- Ecosystem effects should be expected
- We need to deploy more sensors for routine monitoring

Ocean Acidification: A Consequence of Human Production of Greenhouse Gasses – Ocean Impacts

Value:

Bivalves: \$732M ex-vessel commercial value Crustaceans: \$1,265M ex-vessel commercial value

Combined: \$1,997M ex-vessel commercial value (51% of commercial catch by \$)

As ocean calcium carbonate saturation state decreases, a concomitant reduction in calcification rates by marine organisms can occur.

 potential impacts on shelled plankton, coral reefs (shallow and deep), bivalves and crustaceans, and food chains

Figure 1: Impact of rising atmospheric CO₂ on the surface ocean carbonate chemistry and its potential impact on corals.

North Pacific fisheries are at risk because calcium carbonate saturation horizons are relatively shallow there.

Figure 2

Goal: determine pH effects on plankton

Euphausiids (Thysanoessa raschii)

- Early life stage metrics:
 - Hatching success
 - Egg development
 - Molting
 - Progression from nauplii to calytopsis

Psuedocalanus, photo by C. Sislak

- or furcilia
- Respiration
- Mortality

- Growth
 - Reproduction
 - Molting
 - Respiration
 - Mortality
 - Lipids
 - Metals (Ca, Mg)
 - RNA/DNA

T. raschii

Copepod (Pseudocalanus) metrics:

- (Clutch size)
- Hatching success
- Molting
- Progression to N2 & N3
- Respiration
- Mortality

Ocean Acidification Effects on Crabs

NOAA Alaska Fisheries Science Center: Kodiak Laboratory

- Focus on king and Tanner crab.
- 2007-2008 pilot experiments and methods development
- 2009-2010 experimentation:
 - Red and Golden king crab adult molting (growth) slowed by increased CO₂
 - Red king crab larval growth and survival negatively impacted by increased CO₂
 - Tanner crab juveniles experience decreased survival, decreased mass, and decreased size with increased CO₂

Ocean Acidification Effects on Alaska Crabs

Successful development of CO₂ delivery systems

- Gas bubble microcosms
- Gas flow mesocosms

Ocean Acidification Effects on Alaska Crabs

Lower pH reduces larval mineral content, mass, and survival

Ocean Acidification Effects on Alaskan Gadids Fisheries Behavioral Ecology Program, Newport OR w/ University of Alaska - Fairbanks

Focal species: walleye pollock and Pacific cod

Direct effect studies: Examine effects of early life stages to range of predicted pH in laboratory experiments.

Indirect effect studies: Examine influences OA-induced changes in prey abundance and nutritional content.

Ocean Acidification Effects on Alaskan Gadids

Experimental system for large-scale rearing of marine fish larvae and juveniles

- 4 pH treatments with 4 tank replication
- Automated pH regulation
- Independent pH control and monitoring
- Integrated temperature control

Phase I experiments:

6-week exposure of juvenile walleye pollock at warm temperature Metrics: Growth, condition, stress hormones, blood chemistry, otolith growth

Egg incubation trial with walleye pollock at warm temperature Metrics: Hatch success, time to hatch, size at hatch, energy reserves at hatch

Phase II experiments: Larval rearing – hatch to 6 weeks post-hatch Comparison with Pacific cod

Ocean Acidification is a Serious Threat to Marine Ecosystems

Marine species are under threat from rising levels of acidity in the oceans, says the UK's Royal Society.

- Unless carbon dioxide emissions are cut, there could be irreversible damage to ecosystems
- 2. Failure to do so may mean that there is no place in the oceans of the future for many of the species and ecosystems that we know today

Questions?

Goal: understand carbon chemistry in Southeast Alaska

Goal: understand the local environment

- Relate water chemistry to plankton biology
- Separate physical and biological influence on total alkalinity (TA), total dissolved inorganic carbon (TC), and pH

Metrics

- TA, TC, pH
- Phytoplankton biomass (chlorophyll a)
- Nutrients (nitrogen, silicate, phosphate)
- Depth profiles
 - Temperature
 - salinity
 - light

Gulf of Alaska

at 147 Deg W J. Mathis, Univ. Alaska

Aragonite saturation horizons

West Coast

Depth of undersaturated waters (aragonite) on West Coast Feely et al. 2008

Known Locations of Deep Corals and Observed Aragonite Saturation Depths

