Near-bottom light and groundfish catch

Mark Bradburn
NWFSC-WCGBTS

Methods

- Measured nearbottom light for 335 hauls from 2009 WCGBTS
- Wildlife Computers MK9 sensor
- Haul depth < 400 m
- Tested relationship between cpue (kg/ha), depth, and lob

Why do fish enter the net

- Density
 - depth and light dependent
- Catchability (trawl efficiency)
 - light dependent (for some species)

Vision and Vulnerability

Footrope escape

Herding

- More escapes during day hauls (solid line)
- Herding response more common in light
- Light-dependent behaviors

Hypothesis

H_A: cpue will be greater in the light, because of herding

Results

Species	Model	adjusted R ²
Arrowtooth flounder	Im(formula = cpue ~ lob + depth + depth ²)	0.27
Curlfin sole	Im(formula = cpue ~ lob + depth + depth ²)	0.42
Dover sole	Im(formula = cpue ~ lob + depth + depth ²)	0.17
Longnose skate	Im(formula = cpue ~ lob)	0.09
Plainfin midshipman	lm(formula = cpue ~ lob)	0.18
Sandpaper skate	lm(formula = cpue ~ lob + depth²)	0.19
Slender sole	lm(formula = cpue ~ depth + lob)	0.11
Splitnose rockfish	Im(formula = cpue ~ lob)	0.31
Spotted ratfish	lm(formula = cpue ~ lob + depth²)	0.05

Plainfin midshipman

Im(formula = cpue ~ lob)

Slender sole

Curlfin sole

 $Im(formula = cpue \sim lob + depth + depth^2)$

Sandpaper skate Spotted ratfish log Light (μ E m⁻² s⁻¹) 0 \sim log CPUE (kg ha⁻¹) $\log \mathrm{CPUE}\,(\mathrm{kg\;ha}^{-1})$ 0 log Light (μ E m⁻² s⁻¹) 0 7 7 -10 ဂှ ņ 4 0 100 200 300 400 100 200 300 400 Depth (m) Depth (m)

 $Im(formula = cpue \sim lob + depth^2)$

Conclusions

- Negative relationship between near bottom light and cpue for 9 species
- Reject herding hypothesis
- Footrope escape in light?
- Short survey warps may diminish strength of 'herding effect'

Results

Species	Model	adjusted R ²
English sole	no significant relationship with lob or depth	NA
Halfbanded rockfish	no significant relationship with lob or depth	NA
Pink sea perch	no significant relationship with lob or depth	NA
Redbanded rockfish	no significant relationship with lob or depth	NA
Rosethorn rockfish	no significant relationship with lob or depth	NA
Shiner perch	no significant relationship with lob or depth	NA
Shortbelly rockfish	no significant relationship with lob or depth	NA
Spiny dogfish	no significant relationship with lob or depth	NA
White croaker	no significant relationship with lob or depth	NA

Results

Species	Model	adjusted R ²
Big skate	Im(formula = cpue ~ depth + depth ²)	0.48
California skate	Im(formula = cpue ~ depth)	0.36
Chilipepper	Im(formula = cpue ~ depth)	0.33
Darkblotched rockfish	Im(formula = cpue ~ depth)	0.16
Greenstriped rockfish	Im(formula = cpue ~ depth)	0.03
Lingcod	Im(formula = cpue ~ depth)	0.19
Pacific hake	Im(formula = cpue ~ depth)	0.1
Pacific Ocean perch	Im(formula = cpue ~ depth)	0.27
Pacific sanddab	Im(formula = cpue ~ depth)	0.05
Petrale sole	Im(formula = cpue ~ depth)	0.01
Sablefish	Im(formula = cpue ~ depth + depth ²)	0.22
Shortspine thornyhead	Im(formula = cpue ~ depth + depth²)	0.14
Stripetail rockfish	Im(formula = cpue ~ depth)	0.29