"Real-time" steelhead escapement estimates to maximize potential hatchery harvest rates

Ben Truscott – WDFW

2021 Pacific Coast Steelhead Management Meeting

A novel steelhead abundance tool, intended to provide fishery managers "real-time" abundance

PIT tag-based estimates by fishery area and origin Existing methods rely on antiquated and biased data

R Shiny app to automate, visualize, distribute

Tool intended to direct recreational fisheries for maximum benefit

Conservation:

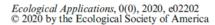
Remove surplus hatchery origin fish
Reduce pHOS
Reduce competition on spawning grounds with NORs

Minimize impact to NORs (maintain ESA compliance) 2% mortality in UCR

Improved data for harvest/impact analyses (maintain ESA compliance)

Tool intended to direct recreational fisheries for maximum benefit

Recreation:


Increase duration?

Increase effectiveness (i.e., more hatchery fish removed)

Long-term success through better management

PIT tag representative sample of the steelhead run at Priest Rapids Dam (15%)

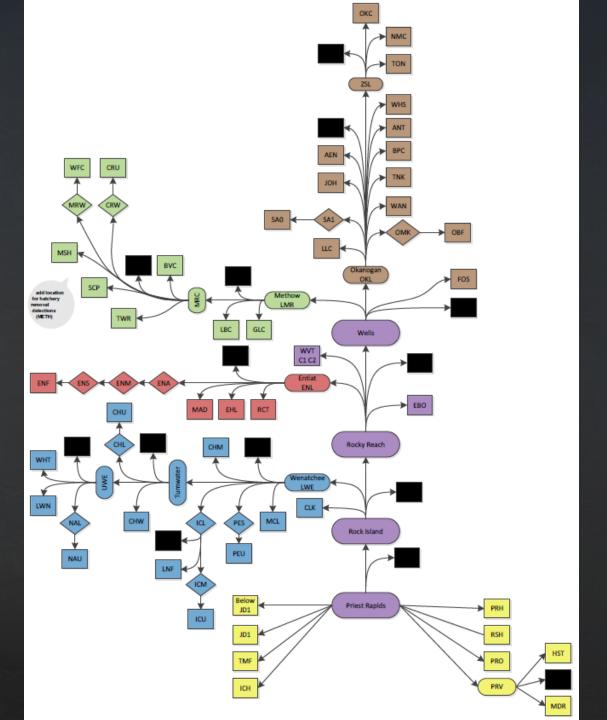
A Bayesian nested patch occupancy model to estimate steelhead movement and abundance

Lynn Waterhouse , 1,2,6 Jody White, Kevin See , 4 Andrew Murdoch , 5 and Brice X. Semmens

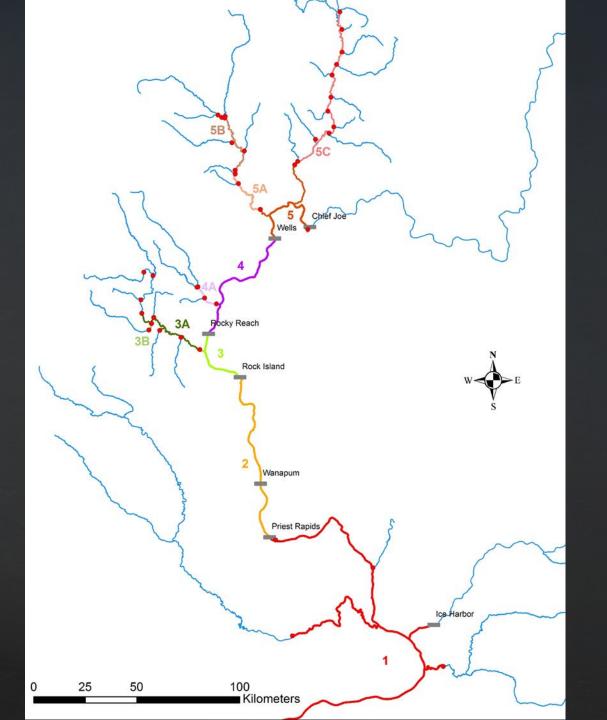
¹Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, California 92093-0202

²John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, Illinois 60605 USA

³29463 Hexon Road, Parma, Idaho 83660 USA

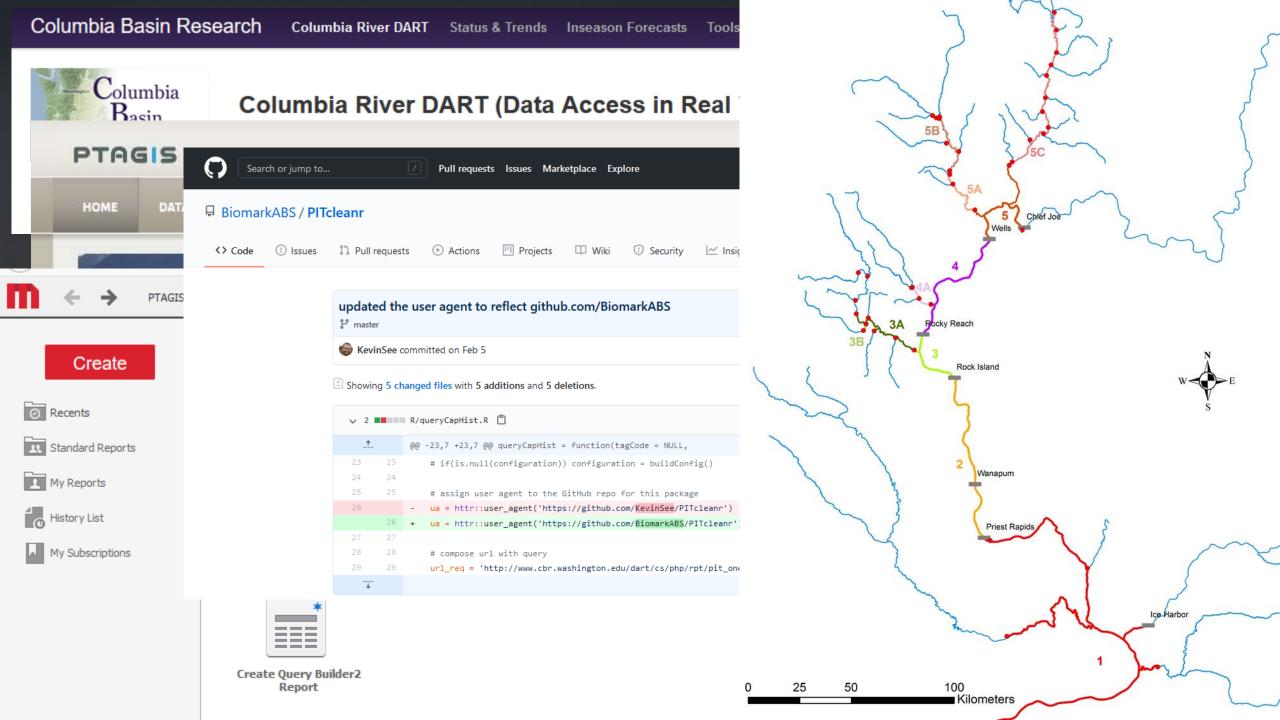

⁴Biomark, 705 South 8th Street, Boise, Idaho 83702 USA

⁵Washington Department of Fish and Wildlife, Wenatchee, Washington 98801 USA


Citation: Waterhouse, L., J. White, K. See, A. Murdoch, and B. X. Semmens. 2020. A Bayesian nested patch occupancy model to estimate steelhead movement and abundance. Ecological Applications 00(00): e02202. 10.1002/eap.2202

Abstract. Anthropogenic impacts on riverine systems have, in part, led to management concerns regarding the population status of species using these systems. In an effort to assess the efficacy of restoration actions, and in order to improve monitoring of species of concern, managers have turned to PIT (passive integrated transponder) tag studies with in-stream detectors to monitor movements of tagged individuals throughout river networks. However, quantifying movements in a river network using PIT tag data with incomplete coverage and imperfect detections presents a challenge. We propose a flexible Bayesian analytic framework

Use patch occupancy model to estimate abundance (Waterhouse et al. 2020)


Generate abundance estimates after conclusion of spawning

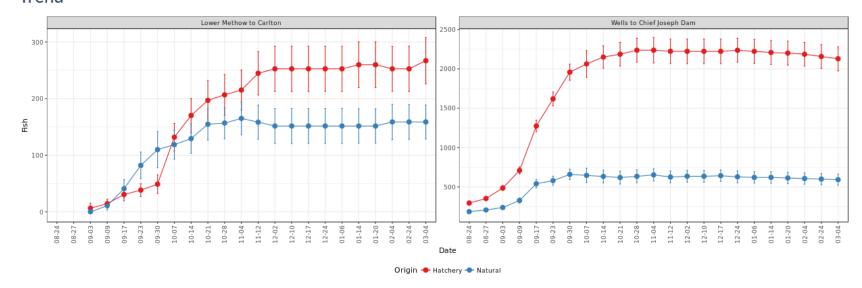
"Real-time estimates"

Generate abundance estimates weekly

Estimates generated at fishery area scale

Upper Columbia Steelhead Escapement

Escapement


Area Map

Lower Wenatchee to Tumwater Dam

Date
Aug 24, 2020
Aug 27, 2020
Sep 03, 2020
Sep 09, 2020
Sep 17, 2020
Sep 23, 2020
Sep 30, 2020
Oct 07, 2020
Oct 14, 2020
Oct 21, 2020
Oct 28, 2020
Nov 04, 2020
Nov 12, 2020
Dec 02, 2020
Dec 10, 2020
Dec 17, 2020
Dec 24, 2020
Jan 06, 2021
Jan 14, 2021
Jan 20, 2021
Feb 04, 2021
Feb 24, 2021
●Mar 04, 2021
Fishing Areas
Downstream of Priest Rapids Dam
Priest Rapids to Rock Island Dam
Rock Island to Rocky Reach Dam

Current Status

Area	Natural	SE (Natural)	Hatchery	SE (Hatchery
Lower Methow to Carlton	158.78	15	267.03	21
Wells to Chief Joseph Dam	591.80	36	2129.03	78

Upper Columbia Steelhead Escapement

显

Escapement

	-	+-	
u	а	LC	

Aug 24, 2020

Area Map

Aug 27, 2020 Sep 03, 2020

Sep 09, 2020

Sep 17, 2020

Sep 23, 2020

pep 30, 2020 pct 07, 2020

Oct 14, 2020

Oct 21, 2020

Oct 28, 2020

Nov 04, 2020

Nov 12, 2020

Pec 02, 2020

Dec 10, 2020 Dec 17, 2020

J. 17, 2020

Pec 24, 2020

an 06, 2021

yan 14, 2021

Yan 20, 2021

Feb 04, 2021

Feb 24, 2021

Mar 04, 2021

Fishing Areas

Downstream of Priest Rapids Dam

riest Rapids to Rock Island Dam

Rock Island to Rocky Reach Dam

ower Wenatchee to Tumwater Dam

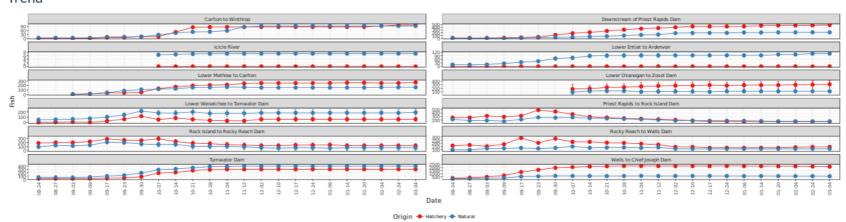
✓ cicle River

umwater Dam

Rocky Reach to Wells Dam

ower Entiat to Ardenvoir

Wells to Chief Joseph Dam


ower Methow to Carlton

arlton to Winthrop

ower Okanogan to Zosel Dam

Current Status

Area	Natural	SE (Natural)	Hatchery	SE (Hatchery)
Carlton to Winthrop	93.82	4	101.04	3
Downstream of Priest Rapids Dam	216.51	10	483.54	12
Icicle River	7.22	0	0.00	0
Lower Entiat to Ardenvoir	108.26	5	0.00	0
Lower Methow to Carlton	158.78	15	267.03	21
Lower Okanogan to Zosel Dam	115.47	20	310.33	53
Lower Wenatchee to Tumwater Dam	187.64	33	57.74	19
Priest Rapids to Rock Island Dam	165.99	11	158.78	15
Rock Island to Rocky Reach Dam	72.17	33	122.69	26
Rocky Reach to Wells Dam	115.47	6	144.34	10
Tumwater Dam	396.94	18	303.12	8
Wells to Chief Joseph Dam	591.80	36	2129.03	78

Results...?

	Oct	Nov	Total		
Total effort hours	8,233	2,876	11,109		
Hours/angler	4	4	4.35		
Total anglers	1,830	719	2549	Oct	
Total steelhead caught	1284	214	1498	H/W	1284
Ad-absent hatchery retained	612	119	731	65.50%	841H
Ad-absent hatchery released	0	0	0		443W
Total ad-present released	672	95	767		
Ad-present hatchery released	229	33	262	Nov	
Natural-origin released ¹	443	62	505	H/W	
Ad-absent hatchery mortality	612	119	731	71.02%	152H
Ad-present hatchery mortality ²	11.45	1.65	13.1		62W
Natural-origin mortality ²	22.15	3.1	25.25	1248 2.02%	
Total steelhead mortality	637.05	123.75	760.8		

¹ Based on an average of 65% natural-origin within the adipose-present population

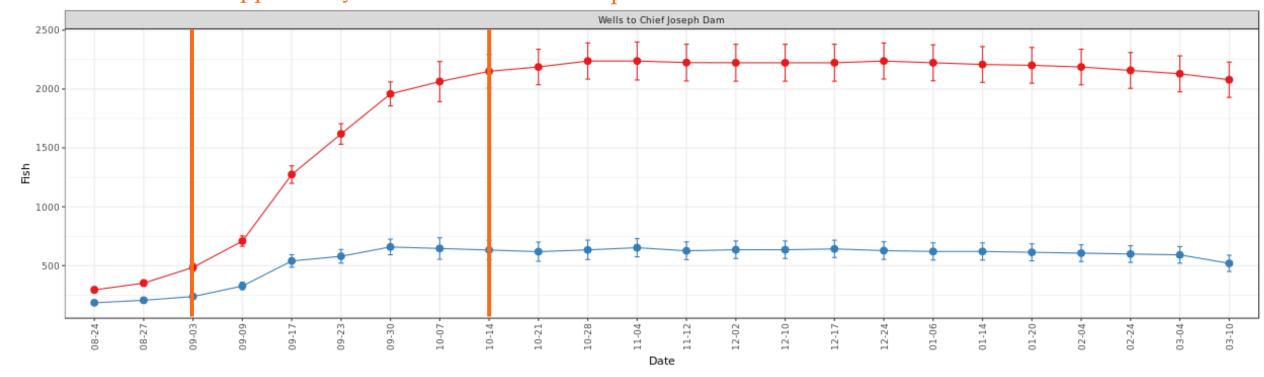
² Calculated using 5% catch and release hooking mortality on natural origin fish

	Oct	Nov	Total	
Total effort hours	8,233	2,876	11,109	
Hours/angler	4	4	4.35	
Total anglers	1,830	719	2549	Oct
Total steelhead caught	1284	214	1498	H/W 1284
Ad-absent hatchery retained	695	117	812	58.09 746H
Ad-absent hatchery released	0	0	0	538W
Total ad-present released	589	97	686	
Ad-present hatchery released	51	9	60	Nov
Natural-origin released ¹	538	88	626	H/W
Ad-absent hatchery mortality	695	117	812	59.05 126H
Ad-present hatchery mortality ²	2.55	0.45	3	88W
Natural-origin mortality ²	26.9	4.4	31	1022 (3.06%)
Total steelhead mortality	724.5	121.9	846	

¹ Based on an average of 93.1% natural-origin within the adipose-present population

² Calculated using 5% catch and release hooking mortality on natural origin fish

Traditional Creel	Real-time Estimates		
Overestimated H origin proportion based on angler interviews	H/W ratio is not reliant on angler interviews		
Underestimated clip rate in H origin	Unbiased spatiotemporal estimates with uncertainty		
Inaccurate biased estimates of escapement	Unbiased spatiotemporal estimates with uncertainty		

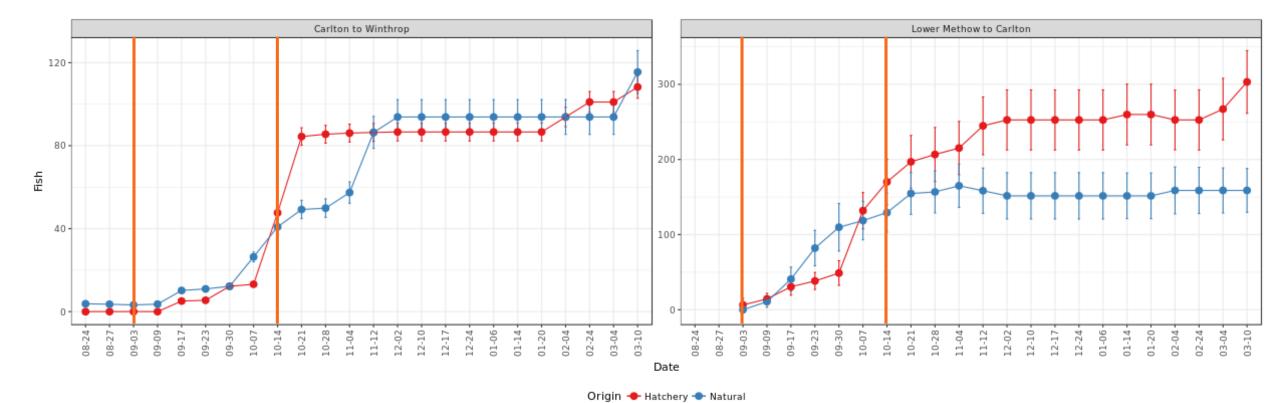

Current Status

Area Natural SE (Natural) Hatchery SE (Hatchery)

Wells to Chief Joseph Dam 519.63 35 2078.52

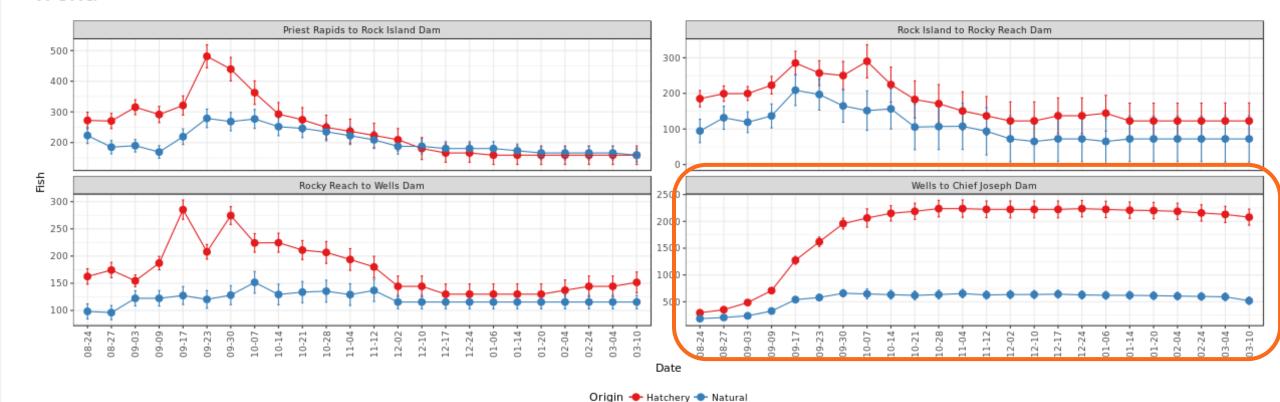
Trend Maximize Opportunity

Minimize Impact

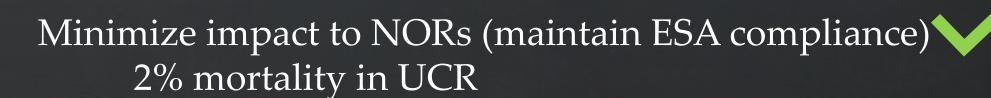


Origin - Hatchery - Natural

77


Current Status

Area	Natural	SE (Natural)	Hatchery	SE (Hatchery)
Carlton to Winthrop	115.47	5	108.26	3
Lower Methow to Carlton	158.78	15	303.12	21


Current Status

Area	Natural	SE (Natural)	Hatchery	SE (Hatchery)
Priest Rapids to Rock Island Dam	158.78	11	158.78	15
Rock Island to Rocky Reach Dam	72.17	33	122.69	26
Rocky Reach to Wells Dam	115.47	6	151.56	10
Wells to Chief Joseph Dam	519.63	35	2078.52	77

Conservation:

Remove surplus hatchery origin fish

Improved data for harvest/impact analyses \
(maintain ESA compliance)

Recreation:

Increase duration?

With better data available?

Long-term success through better management

A big thank you to Janet Eckenberg and staff for decades of service at Priest Rapids Dam, and Jay Deason and staff for instream PIT array construction, operations, and maintenance.

Kevin See (Biomark) and Phil Weyland (WDFW) continue to provide vital technical support.

Project was funded through the Columbia River Salmon and Steelhead Endorsement Fund and BPA (Project #2010-034-00), with additional with support from CCPUD and GPUD.

A special thanks to GPUD for providing WDFW the facilities and access to Priest Rapids Dam for monitoring steelhead for over 30 years.