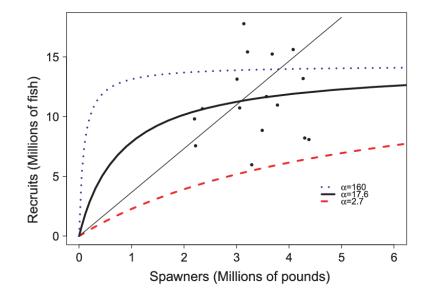
Generating estimates of catch for wild steelhead in recreational fisheries

Challenges and Solutions



Kale Bentley* and Thomas Buehrens

Washington Department of Fish & Wildlife March 17th, 2021 *Presenting author: kale.Bentley@dfw.wa.gov

Why generate estimates of impacts?

- Quantifying abundance, demographics, and harvest are important for managing exploited stocks
- WDFW must quantify impacts from recreational fisheries on depressed stocks
 - ESA listings
 - Co-manager agreements
 - Agency mission

How are impacts quantified?

- Impacts from recreational fisheries can be quantified many ways
- Typically, impacts = mortalities via catch
- The type of fishery dictates relationship between mortalities and catch
- Catch estimates are needed to operate recreational fisheries

Harvest fishery

C&R fishery

How are estimates of catch generated? Catch Record Card (CRC)

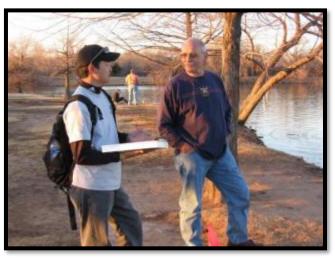
Approach #1: Catch Record Cards (CRCs)

- Overview
 - Anglers are legally required to record and report harvest of salmon, steelhead, sturgeon, halibut (and crab)
 - Estimates of catch generated by expanding reported cards
- Advantages
 - Centralized system
 - Can generate estimates for all state-wide CRC fisheries
 - Relatively cheap (~\$180K/year)
- Disadvantages
 - Only require anglers to report harvest (currently)
 - Estimates are delayed 1-2 years

	One Wild	Steel	head	Alla	ntion Area		
					or Details sed Steelhead	-	
	CATCH AREA CODE		DAY (1-31)		CATCH AREA CODE	MO. (1-12)	DAY (1-31)
Re	cord Hatcher	Fish H	lere Onl	y:	17/	ß	
1		6		15	NV A	1	
2		1	N. Co	17	Se R		N. 1971 - 1972 - 1973
3		1.13	A PARTY	18	and a		
4	1.10		PattyD	19	100		
5				20			
6				21			
7				22			
8				23			
9				24			
10				25			
11				25			
12	1			27			
13				28			
14		*****		29			
15				30			

How are estimates of catch generated? Catch Record Card (CRC)

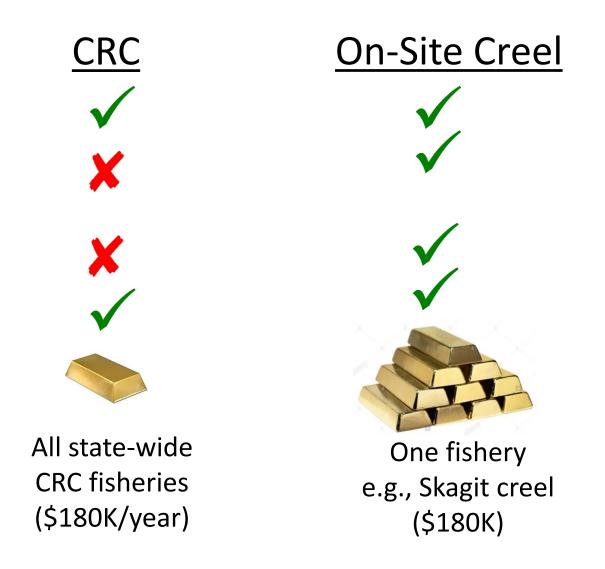
Approach #1: Catch Record Cards (CRCs)


- Overview
 - Anglers are legally required to record and report harvest of salmon, steelhead, sturgeon (and crab)
 - Estimates of catch generated by expanding reported cards
- Advantages
 - Centralized system
 - Can generate estimates for all state-wide CRC fisheries
 - Relatively cheap (~\$180K/year)
- Disadvantages
 - Only require anglers to report harvest (currently)
 - Estimates are delayed 1-2 years

Approach #2: On-site creel surveys

- Overview
 - Enumerate and interview anglers
 - Estimate catch via estimates of effort & CPUE
- Advantages
 - Works for both harvest and C&R fisheries
 - Catch estimates can be generated in-season
- Disadvantages
 - Expensive to implement (e.g., Skagit steelhead fishery; ~\$180K)

	In Wild 3	Steelh	ead R	ate	ntion Area	s Onl	1.
					wed On T		
					or Details		
-					sed Steelhead		
	CATCH AREA		DAY		CATCH AREA CODE	MO. (1-12)	DAY (1-31)
Re	cord Hatcher	y Fish H	ere Onl	1:			
1				16			
2				17			
3		10	1.1.1.1.1	18	a.2.2		
4			Country 1	19	1		
5				20			
6				21			
7				22			
8				23			
9				24			
10				25			
11				25			1
12				27			
13		-		28			
14				29			
15				30			


On-site Creel Surveys

Selecting an approach for catch estimates

Consideration

- Type of fishery
 ≻Harvest
 ≻Catch & Release
- 2. Timeliness of reporting
 ➢In-season
 ➢Post-season
- 3. Cost and Feasibility

Summary: Challenges and Solutions

 Reality: On-site creels are the only available method to (statistically) estimate catch of wild C&R steelhead

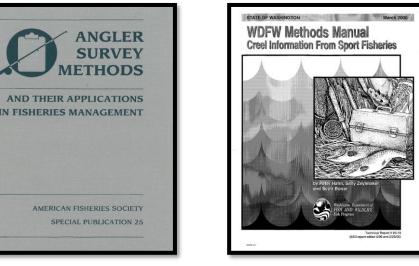
Summary: Challenges and Solutions

 Reality: On-site creels are the only available method to (statistically) estimate catch of wild C&R steelhead

Challenge: No centralized creel program

- Limited coordination
- Inconsistent methods
- Redundancy

Summary: Challenges and Solutions


- Reality: On-site creels are the only available method to (statistically) estimate catch of wild C&R steelhead
- Challenge: No centralized creel program
 - Limited coordination
 - Inconsistent methods
 - Redundancy
- Solution: Improve on-site creels by building a "grass-roots creel package"
 - Standardized protocols
 - Database and mobile e-data collection
 - Modernized creel model
 - Reproductible analysis and reporting

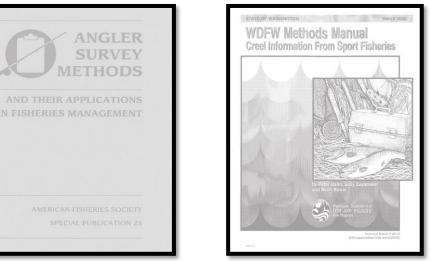
Improvement # 1 – Standardized study designs

Challenge: Variable study designs

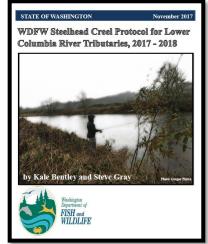
- Angler survey methods have existed for many decades e.g., Pollock et al. 1994, WDFW 90s
- Wide range of approaches & equations
- Implementation can be quite variable

Old protocols: Breath > Depth

Improvement # 1 – Standardized study designs

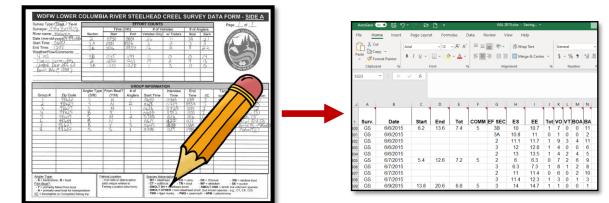

Challenge: Variable study designs

- Angler survey methods have existed for many decades e.g., Pollock et al. 1994, WDFW 90s
- Wide range of approaches & equations
- Implementation can be quite variable


Solution: Updated steelhead creel protocols

- Survey type chosen to match fishery
 - Focused on roving-roving creels
- Standardized protocol
 - High level components (e.g., spatial expansions)
 - Consistent interview questions
 - Defined data types and options

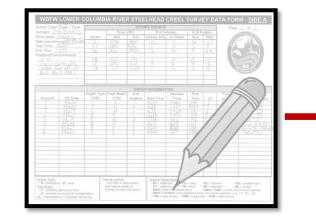
Old protocols: Breath > Depth

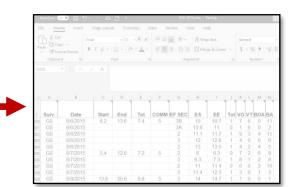

New protocols: Breath < Depth

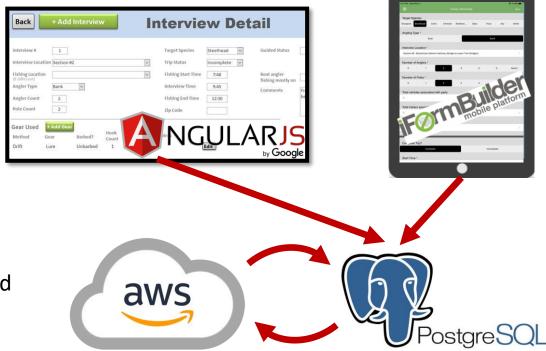
Improvement # 2 – Data collection & storage

Challenge: No centralized database

- Most data stored in spreadsheets
- Variable data fields for same data
- Paper datasheets requiring hand entry

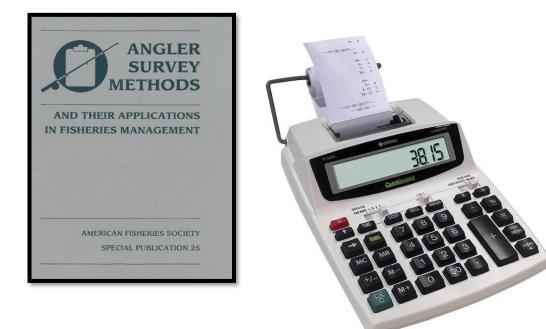

Improvement # 2 – Data collection & storage


Challenge: No centralized database


- Most data stored in spreadsheets
- Variable data fields for same data
- Paper datasheets requiring hand entry

Solution: Relational database & e-Data

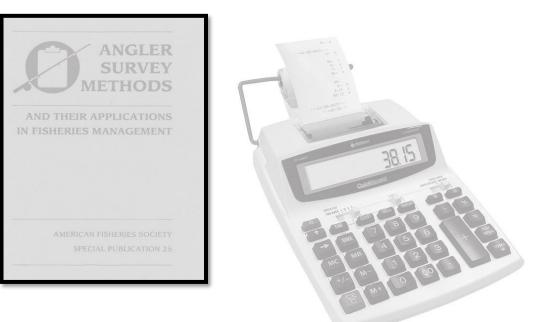
- Database
 - 1st generation: Microsoft Access back-end
 - > 2nd generation: PostgreSQL back-end & AWS
- Data collection/entry
 - ➤ 1st generation: Access Front-end
 - ➤ 2nd generation: mobile iForm & Access front-end
 - ➤ 3rd generation: mobile iForm & Angular JS front-end

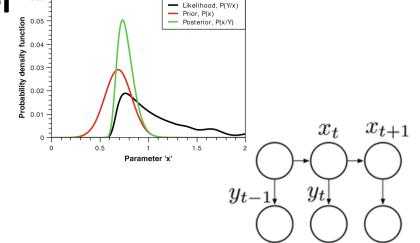


Improvement # 3 – Modernized creel model

Challenge: Outdated creel model

- Analytical methods developed >40 years ago
- Limitations of traditional estimators
 - Ignores generative processes of data
 - Ignores spatial & temporal auto-correlation in data
 - Ignores need for spatial expansions
 - Ignores components of uncertainty


Improvement # 3 – Modernized creel model


Challenge: Outdated creel model

- Analytical methods developed >40 years ago
- Limitations of traditional estimators
 - Ignores generative processes of data
 - Ignores spatial & temporal auto-correlation in data
 - Ignores need for spatial expansions
 - Ignores components of uncertainty

Solution: Bayesian, state-space creel survey model

- Two-part model: process & observation
- Allows for serial auto-correlation in space & time among angler-types and sections
- Generates unbiased estimates of catch
- Accurately quantifies uncertainty

Improvement # 4 – analysis & reporting

Challenge: Inconsistent analysis & ease of use

- Variable analysis used across projects
- Difficult to validate model and results
- Redundancy
- Steep learning curve to use new creel model

Improvement # 4 – analysis & reporting

Challenge: Inconsistent analysis & ease of use

- Variable analysis used across projects
- Difficult to validate model and results
- Redundancy
- Steep learning curve to use new creel model

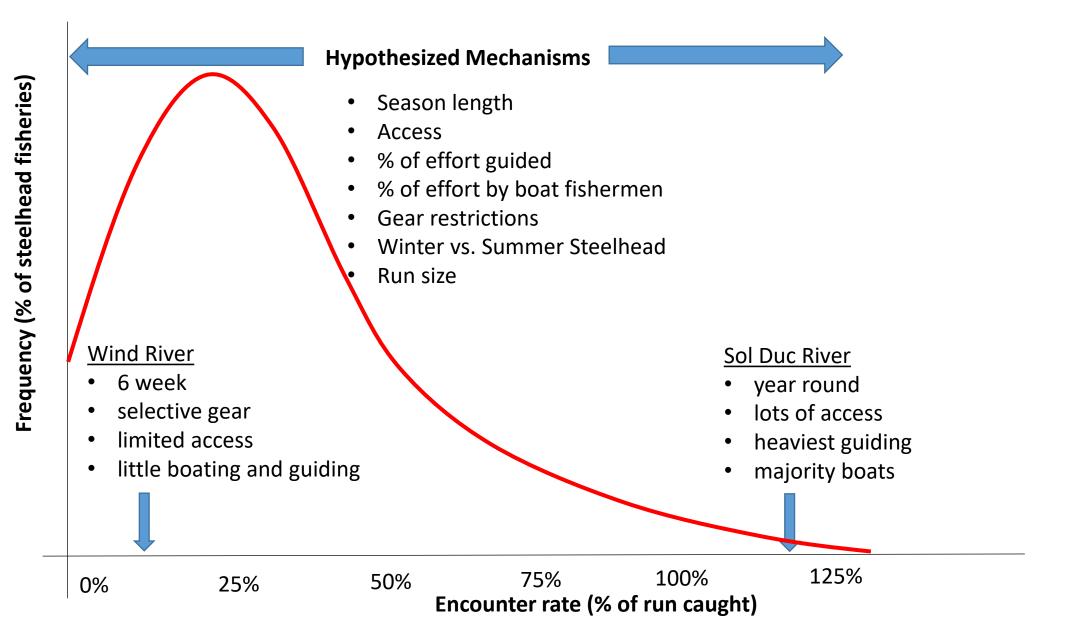
Solution: Standardized analysis

- Complete analysis in R (.Rmd)
 - Import data from database (or standalone spreadsheet)
 - Data summarization and formatting
 - Generates estimates using new model
 - Summarizes output in tables & figures
- R code publicly available on GitHub
 - Code is "functionalized" but not yet an R package
 - Code and model specific to "roving-roving" study design

github.com/tbuehrens/CreelAnalysis

Remaining challenges

- Expanding the use of our "grass-roots creel package"
- On-site creel surveys are very expensive...what are other options?


Remaining challenges

- Expanding the use of our "grass-roots creel package"
- On-site creel surveys are very expensive...what are other options?

Future Direction

- Characteristics of a better alternative to estimate C&R catch
 - ➤In-season and timely
 - ≻Cheap
 - >Estimates of all catch everywhere all the time
- Approaches
 - ➤1.) Generalizable catch model
 - ≻2.) CRC for released fish

Future Approach #1 - Generalizable creel model

Future Approach #2 – CRCs for released fish

- Use existing CRC framework to generate estimates of released wild fish
 - Phase in adoption
 - Wouldn't require 100% adoption of e-CRC
 - Could "turn off" reporting for species/fisheries
- Barriers to adaption
 - Finite amount of space on the CRC
 - Problem: CRCs cost money, disincentive to record released fish
 - Solution: Develop an online or mobile CRC app
 - Reporting bias
 - <u>Problem</u>: Unrepresentative sampling, incorrect reporting
 - Solution: Quantify bias and adjust estimates accordingly

Catch Record Card (CRC)

Concluding thoughts...

- Budgets have not matched increased demand for catch estimates
- Better creel models and other tools may reduce monitoring costs
- Ultimately, may need to rethink data collection/analysis and try "new" approaches

Questions?