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Summer run timing (aka premature migration) likely
evolved in response to seasonal variation in water
flow and temperature.
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Premature migrating individuals have a dramatically
different behavior and physiology.
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*Store excess fat to uncouple migration and spawning behavior




Many studies have investigated the genetic and
evolutionary basis of premature migration.

A = Mature
B = Premature

Allendorf 1975
Chilcote et al. 1980
Thorgaard 1983
Nielsen et al. 1999
Waples et al. 2004
Kinziger et al. 2013
Arciniega et al. 2015
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All studies have supported a scenario of independent
parallel evolution and evolutionary plasticity.

“These results suggest that the different times of return may
have evolved independently in the different river systems.”

Thorgaard 1983

“These results indicate that run-timing diversity has
developed independently by a process of parallel evolution

In many different coastal areas.”
Waples et al. 2004



All
par

studies have supported a scenario of independent
allel evolution and evolutionary plasticity.

at least some patterns of Chinook salmon life-history

diversity appear to be evolutionarily replaceable, perhaps
over time frames of a century or so. The evidence for
repeated parallel evolution of run timing in Chinook salmon

INd
ha

iIcates that such a process is likely, provided that
pitats capable of supporting alternative life-history

trajectories are present and sufficient, robust source

PO

pulations are maintained.”
Waples et al. 2004



New sequencing technologies enable high resolution
genetic analyses in any species.

Cost per Raw Megabase of DNA Sequence

National Human Genome
Research Institute
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RAD sequencing confirms that overall genetic structure relates
to geography and mirrors current DPS designations.
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A single genetic locus associated with premature
migration in North Umpqua steelhead.

Umpgua River
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The same genetic locus associated with premature
migration in Eel River steelhead.
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A single ancient genetic evolutionary event is the
ultimate source of all premature migration alleles.
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Strong positive selection allowed premature migration
to spread around the West Coast.

Genetic Diversity

Genome-wide GREB1L region
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Greb1L is expressed in AQRP neurons which
modulate diverse behavior and metabolic processes.

Greb1L expression in mice



Chinook overall genetic structure relates to geography and
mirrors current ESU designations.
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The same genetic and evolutionary mechanism
explains premature migration in Chinook too.
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Previous genetic studies were correct with respect to
phenotypic evolution but not allelic evolution.

“... at least some patterns of Chinook salmon life-history
diversity appear to be evolutionarily replaceable, perhaps
over time frames of a century or so. The evidence for
repeated parallel phenotypic evolution of run timing Iin
Chinook salmon indicates that such a process is likely,
provided that habitats capable of supporting alternative life-
nistory trajectories are present and sufficient, robust source
populations that contain the necessary, pre-existing allele
are maintained.”

Waples et al. 2004*



Identifying the run-timing locus led to opposite
conclusions about the evolutionary basis and
conservation priority of run timing variation.

* Premature migration explained by a
single locus

» Single ancient evolutionary event in
each species

* New allele spread through positive
selection and straying

e Can only evolve through limited
genetic mechanisms

e Allele will not soon re-evolve if lost

* Higher conservation priority than
previously thought

* Genomics powerful tool for
prioritizing conservation
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The Rogue River provides a unique opportunity to
further investigate the conservation genetics of
premature migrating (aka spring-run) Chinook.

HP=Huntley Park (~rkm 13)
GRD=Gold Ray Dam (rkm 204)
LCD=Lost Creek Dam (rkm 253)
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Rogue Chinook have experienced a dramatic shift in
migration timing since the Lost Creek Dam was built.

Proportion of wild adult return
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Capture sequencing identified better Chinook
migration type markers in the GREB1L region.
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Capture sequencing identified better Chinook
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GREB1L genotype is strongly associated with
migration characteristics in Rogue Chinook.
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Gold Ray fish counts reveal a dramatic decrease in
spring-run allele frequency since LCD construction.
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Selection modeling suggests spring-run allele will
soon be lost from Rogue unless the allele is recessive
with respect to fithess.
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Salmon River Shasta River Scott River

- 31 juveniles - ~500 juveniles - ~500 juveniles



Salmon River Shasta River Scott River

- 31 juveniles - ~500 juveniles - ~500 juveniles

- Spring: 4 - Spring: 0 - Spring: 0

- Het: 6 - Het: 2 - Het: 2

- Fall: 21

Spring allele Spring allele Spring allele

frequency: frequency: frequency:
0.23 0.002 0.002




Salmon River Shasta River Scott River

- 31 juveniles - ~500 juveniles - ~500 juveniles
- Spring: 4 - Spring: 0 - Spring: 0

- Het: 6 - Het: 2 - Het: 2

- Fall: 21

Expected spring allele frequency if NO selection
against heterozygotes: >0.05

Spring allele Spring allele Spring allele
frequency: frequency: frequency:
0.23 0.002 0.002




Anthropogenic habitat alteration leads to rapid loss of
adaptive variation and restoration potential in wild
salmon populations.

* Virtually perfect association between GREB1L genotype and migration type
* Heterozygotes have intermediate migration phenotype

* Historic upper Klamath Chinook used same spring-run allele as
contemporary populations

e Spring-run allele not being maintained in absence of spring-run phenotype
e Spring-run allele likely not recessive with respect to fithess

* Loss of spring-run allele from lower Klamath populations may hinder
restoration upon dam removal

* Reinforce the need to protect adaptive genetic variation to maintain
restoration potential
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