Estimating interobserver variability in redd counts for summer steelhead: Lessons from Joseph Creek, Oregon

Jeff Yanke and Kyle Bratcher ODFW Wallowa Fish District, Enterprise Jeff.Yanke@state.or.us

Redd Counts

- Common surrogate for abundance
 - Anadromous and resident nest-building salmonids
- Critical assumption
 - Counts are representative of actual redd numbers
- Varying levels of error documented (compared to best estimate)
 - Dunham (2001): 28-254% bull trout
 - Muhfield (2006): 78-130% bull trout
 - Murdoch (2018): 48% (±23%) steelhead

Redd counts for summer steelhead

- NE Oregon steelhead populations
 - Principal method for monitoring abundance
 - Grande Ronde, Imnaha, John Day basins
- Steelhead redd counts
 - Index surveys
 - Relative abundance (redds per mile)
- Population abundance expansion
 - Fish per redd
 - Proportion of spawning habitat surveyed

Spring redd count challenges

- Environmental conditions
 - Small headwater tributaries
 - Flows and turbidity
 - Redd morphology and longevity
- Resource limitations
 - Single annual surveys
 - Individual observer
- How do these factors affect redd counts and estimates?

Study objectives

- 1. Estimate interobserver variability for steelhead redd counts
 - a. How precise are redd counts?
 - b. Is variability consistent across streams and reaches?
- 2. Evaluate factors that may influence variability
 - a. Are experienced observers more relatively consistent?
 - b. Do faster survey rates lead to more variability?

Study Area – Joseph Creek

- Joseph Creek steelhead
 - Grande Ronde River
 - Managed for wild production
 - Population designated as 'highly viable'
- Spawning
 - Occurs throughout watershed
 - Typically occurs April-May
- Monitoring
 - Long-term dataset (since 1960's)
 - Focused in Chesnimnus Creek tributaries

Redd counts and escapement – Joseph Creek steelhead

Methods – survey reaches

- Survey reaches
 - Elk, Peavine, and Devils Run Creeks
 - Upper and lower reaches
 - Historically similar redd densities
- Observers
 - Eleven observers with varied experience
 - Three to five observers per reach
- Replicate counts
 - Staggered at one-hour intervals on same day (1000-1400)
 - Maintain independence, control for conditions

Methods – data summary and analysis

• Variability

- Calculated as absolute (+ or -) percent difference from mean count
- Observer experience
 - Factored no. seasons surveyed and frequency of surveys
 - Novice: 1-2 years
 - Intermediate: 3-6 years
 - Experienced: 11-24 years
- Survey rate
 - Time to complete survey divided by total length (km/hr)

Results - Interobserver variability

Mean reach redd count (n = 3-5)

Results - Observer experience and survey speed

- Interobserver variability
 - Ranged from 2% to 75% from mean redd count (0% being equal)
 - No differences among streams or reaches
- Observer experience
 - Inexperience did not contribute to higher variability
- Survey rate
 - Most surveys conducted between 1.5 to 2.0 km/hr
 - Faster rates were not correlated with higher variability

Discussion points

- Low precision a potentially large source of error
 - How may this affect population estimates and status assessments?
- Caveats
 - Precision vs. accuracy requires best estimate of true redd count
 - Volunteers contributed to higher levels of variability
- Implications for Joseph Creek
 - Redd counts discontinued
 - Rely on weir, PIT tag array monitoring

Steelhead redd counts – Lessons learned

- Redd counts remain a useful tool for monitoring
 - Spawning distribution
 - Relative abundance unaffected if error is consistent
 - Environmental conditions always a factor
 - If used to monitor abundance...
- Tools to improve precision
 - Training
 - Well-defined criteria
 - Repeatability
 - Regular calibration
 - Staff continuity

Thanks to:

ODFW East Region Research

- Jim Ruzycki
- Mike Flesher
- Ali Fitzgerald
- Chris Horn
- Ian Tattum
- Marcus Anderson
- Shannon Skinner

ODFW Retired
Tim Unterwegner
US Forest Service
Alan Miller

