
A Preliminary Assessment of Residual Hatchery Steelhead in the Hood River, OR

Philip C. Simpson ODFW Hood River Research Program March 22, 2018

Study Area

- **Study Area** Highly variable flow
- East/Middle Forks

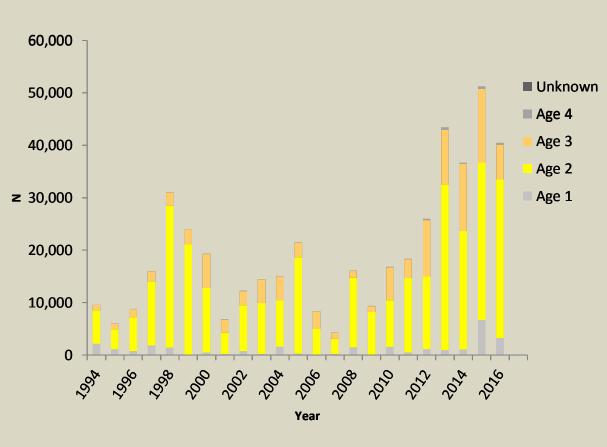
GlacialConoff

- WUNGE 14 STEED THE OD RIVER AT TUCKER BRIDGE, NEAR HOOD RIVER, OR West_förk Spធ្<u>ន</u>័ពខ្លាfed Summer Steelhead Both run types ESA listed Both have been subject to hatchery Δ Δ Δ supplementation Summer prögran Oct Oct Oct Oct Oct Oct 21 22 23 24 25 26 2017 2017 2017 2017 2017 2017 suspended daily statistic (58 years) — Period of approved data Discharge
 - discharge at floodstage

Hood River Winter Steelhead Hatchery Program

- Currently classified as an integrated program
- Mean release total (1988 2017) = 47,644
- Released as Age 1 Smolts
- "Volitional" release

Hatchery Smolt Life History Pathways


- Delayed migrant
 - May emigrate after additional 1-2 years in freshwater
- Smolt
 - True age 1 outmigrant
- Resident
 - Exclusive
 freshwater life
 history
 - Potentially precocial

Hood River Wild Steelhead Life History

- Age 1 release strategy may not be ideal for conservation of wild populations where typical smolt age is 2-3 (Tatara et al. 2017)
- Mean age at migration (1994 – 2013), Hood River winter/summer steelhead smolts
 - Age 1: 6.3%
 - Age 2: 70.5%
 - Age 3: 22.7%
 - Age 4: 0.5%
- ≈90% migrate as age 2 or 3 (Peven et al. 1994)

Study Impetus

- ISRP Review of the Revised Hood River Production Program Master Plan (August 2008)
 - "The effect of residualized steelhead...was insufficiently addressed"
 - "...assess the extent to which residualism of hatchery steelhead is resulting in the displacement of wild fish from Hood River habitat"
- Master Plan Revision (NWPCC process)

Independent Scientific Review Panel for the Northwest Power & Conservation Council 851 SW 6® Avenue, Suite 1100 Portland, Oregon 97204 isrp@rwcouncil.org

Review of the Revised Hood River Production Program Master Plan

Step One of the Northwest Power and Conservation Council's Three-Step Review Process

ISRP 2008-10 August 21, 2008

Richard Alldredge Robert Bilby Peter Bisson John Epifanio Linda Hardesty Charles Henny Colin Levings Eric Loudenslager Kate Myers Tom Poe Bruce Ward Richard N. Williams, PRG

NOAA Physiology Study

- Co-managing agency CTWS contracted w/NOAA (Larsen et al. 2017)
- Evaluated 300 hatchery steelhead from each brood year 2011 – 2013
- Estimated ≈ 96 97% of annual release group was destined for smoltification
 - Out of 50K released,
 "approximately 1,500 2,000 of them may
 residualize in the basin."
 - Non-smolts = 0.1%
 - "Only one male steelhead was categorized as an immature parr over all years combined." (n=900)

Transactions of 1 © American Fisl ISSN: 0002-848 DOI: 10.1080/00			
ARTICLE Use of	Release Year	Length	
Charac Winter		174.3	
Donald A National Oc Northwest F	2006	163.8	
Seattle, Was Mollie A. School of A Washington	2007	187.0	
Ryan S. Confederate Parkdale, C	2008	201.6	
Penny Sv National Oc Northwest F Seattle, Was	2009	189.9	
seame, mas	2010	202.9	
Ab	2011	198.3	nwater in size ils for
or m: pr ha de vis	2012	214.1	chery regon, assess z size, oduc-
tiv inc en pr	2013	214.6	matic e also rr; (2) ter <1 emale
ye: sm po aft m: for	2014	202.3	of the ature salt nated
	2015	203.5	
*Correspo Received	2016	197.2	663

Applied Context

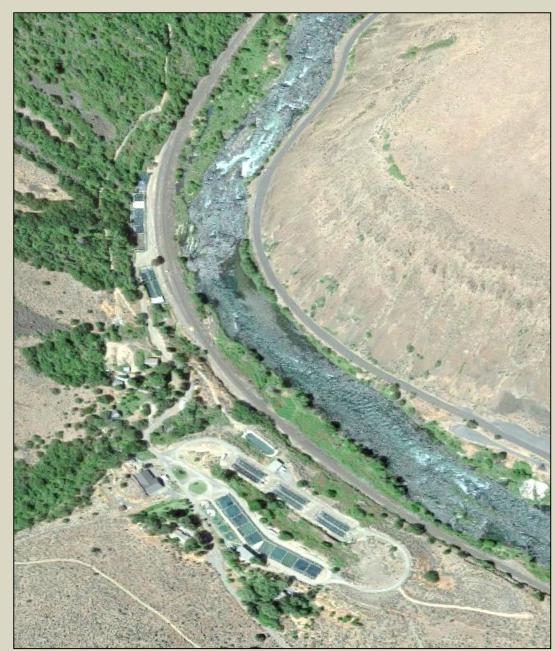
- Assess findings when data is available
 - Evaluate knowns within status-trend monitoring framework
- Bonneville Power Administration funding declining
 - Particularly Monitoring and Evaluation programs
 - Ability to answer complex questions potentially diminishing

Objectives

Estimate the proportion of release group that residualizes and survives to outmigrate as an age 2 smolt

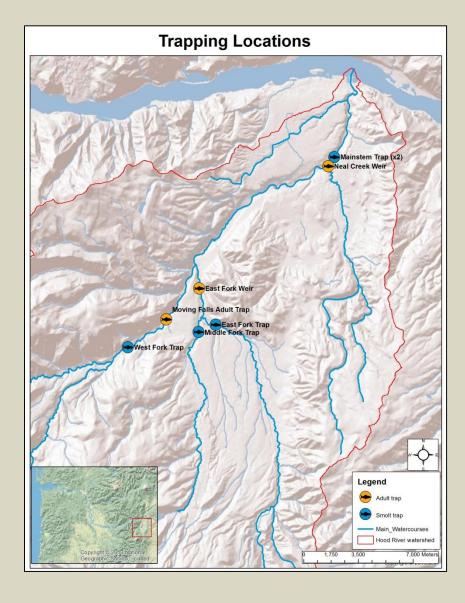
Hatchery Smolt Life History Pathways

- Delayed migrant
 - May emigrate after additional 1-2 years in freshwater
- Smolt
 - True age 1 outmigrant
- Resident
 - Exclusive
 freshwater life
 history
 - Potentially precocial


Objectives

- Estimate the proportion of release group that residualizes and survives to outmigrate as an age 2 smolt
- 2. Address the role of size within the context of residualism
- Assess the effects of hatchery residuals on wild fish

Methods—Oak Springs Subsampling


- 400 800 individuals sampled for:
 - Length
 - Weight
 - Fin clip accuracy
 - Fin clip quality
- Performed 1 2 weeks prior to release

Methods: PIT tagging

- Hatchery winter steelhead
 - Approximately
 50,000 total release
 - CTWSRO ≈ 10%
 - ODFW $\approx 1\% 5\%$

Smolt Survival Estimation

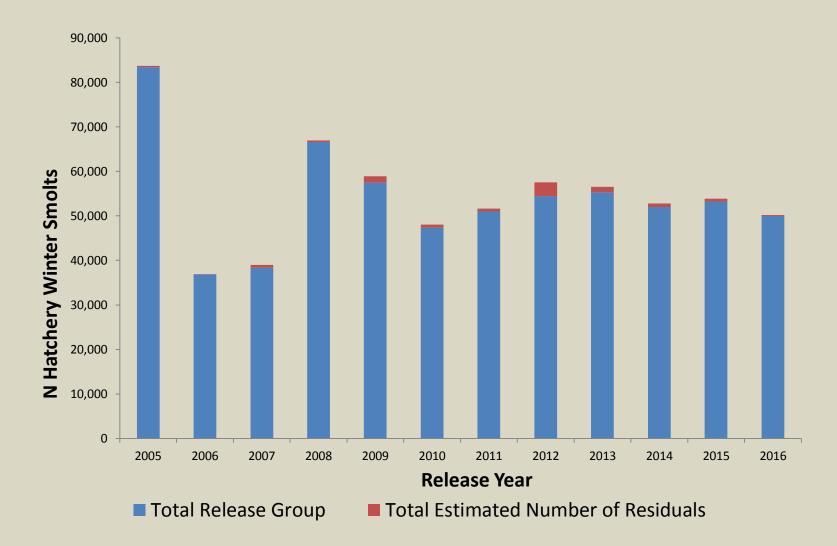
Quantifying Residuals

• Estimated total number of residuals calculated by:

$$N_{y} = \frac{\sum_{y_{i}}^{n} (d_{ky+1}) \times \left[\frac{1}{(p_{ky+1})}\right]}{M_{y}}$$

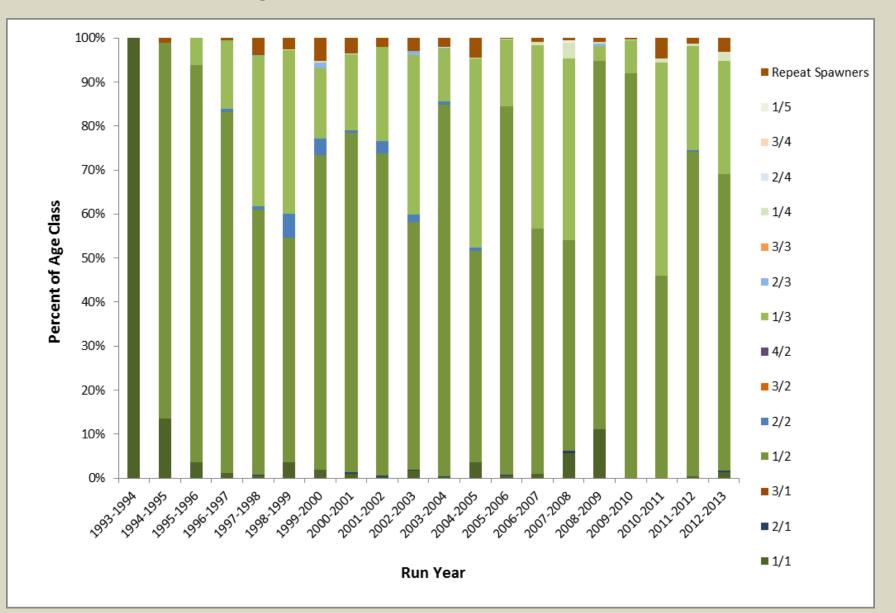
where:

 $egin{aligned} N_y \ d_{ky} \ p_{ky} \ M_v \end{aligned}$


- = Total residuals originating from release year y
 - = Recaptures/interrogations of hatchery winter steelhead during release year y
- = probability of detection at site k during release year y
- = Proportion of hatchery release group year y that was PIT tagged

Methods—Smolt Production MR Model

- Response variable
 - Abundance of wild age 2 smolts
- Predictor variables
 - Average flow rate during Sept 1 Oct 15 the year prior to smolt migration
 - Average flow rate during April May of brood year
 - Average fork length of age 2 smolts
 - Smolt abundance of elder age class
 - Total adult spawners during Brood Year
 - Proportion of wild vs. hatchery spawners
 - Dec April flow variance
 - % Residuals



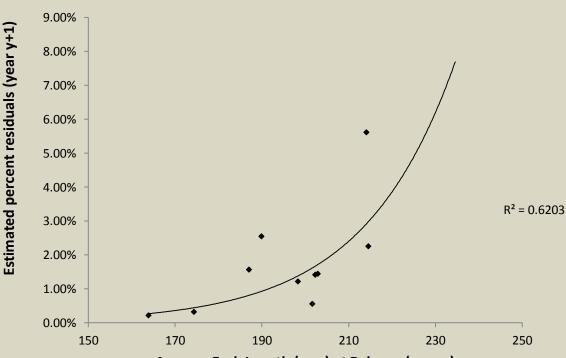
Results

Mean = 1.57% [0.22% - 5.61%]

FW-2 Reproductive Contribution

Results—Model Selection

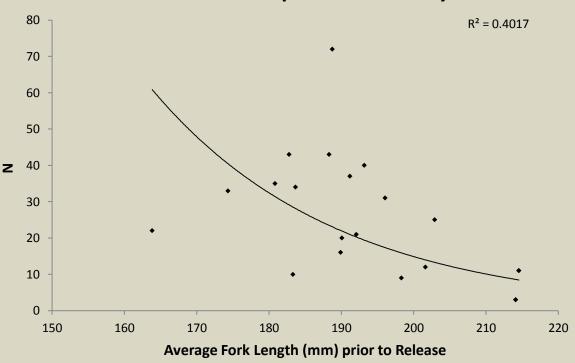
R software (AICmodavg)


Modnames	К	AICc	Delta_AICc	ModelLik	AICcWt	LL	Cum.Wt
RES	3	164.528	0	1.00E+00	9.07E-01	-76.26402	0.9068704
RES+PP	4	170.9752	6.447176	3.98E-02	3.61E-02	-74.82094	0.9429747
MTLF+RES	4	171.718	7.189983	2.75E-02	2.49E-02	-75.19234	0.9678782
intercept only	2	173.4687	8.940636	1.14E-02	1.04E-02	-83.53433	0.9782561
AVGQBY+RES	4	173.5492	9.021168	1.10E-02	9.97E-03	-76.10793	0.9882245
РР	3	174.1981	9.670027	7.95E-03	7.21E-03	-81.09903	0.995431
AVGQBY	3	176.0126	11.484585	3.21E-03	2.91E-03	-82.00631	0.9983397
MTLF	3	177.4915	12.963473	1.53E-03	1.39E-03	-82.74575	0.9997283
MTLF+PP	4	182.3592	17.83116	1.34E-04	1.22E-04	-80.51293	0.99985
AVGQBY+PP	4	183.2205	18.692494	8.73E-05	7.92E-05	-80.9436	0.9999292
MTLF+AVGQBY	4	184.8096	20.281595	3.94E-05	3.58E-05	-81.73815	0.999965
AVGQBY+RES+ PP	5	185.0423	20.514301	3.51E-05	3.18E-05	-72.52117	0.9999968
MTLF+RES+PP	5	189.638	25.109943	3.53E-06	3.20E-06	-74.81899	1
min	6	240.7415	76.213428	2.82E-17	2.56E-17	-72.37073	1

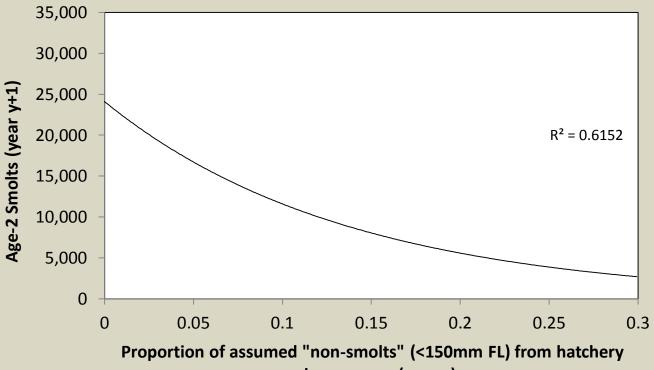
Results—Model Selection

call: lm(formula = ATWOS ~ RES, data = mydata2)				
Residuals: Min 1Q Median 3Q Max -7266 -1340 1190 1918 3774				
Coefficients: Estimate Std. Error t value Pr(> t)				
(Intercept) 4434 1952 2.272 0.06353 .				
RES 460336 82757 5.563 0.00143 **				
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 3858 on 6 degrees of freedom				
Multiple R-squared: 0.8376, Adjusted R-squared: 0.8105				
F-statistic: 30.94 on 1 and 6 DF, p-value: 0.001429				

Results—Fork Length of Residuals


- Estimated percent of FW2 hatchery outmigrants increases as average length at release increases?
- Generally larger fish are more likely to survive to the following year and be detected
- Good environmental conditions likely benefit both wild and hatchery fish

Average Fork Length (mm) at Release (year y)

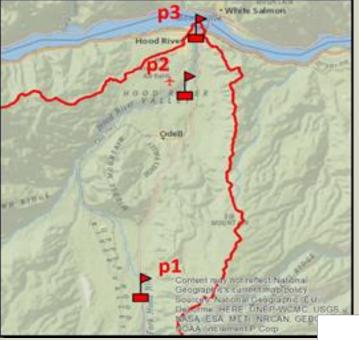

Results—Fork Length of Potential Residuals

- Summer/Fall trapping
- Size ↑'s, frequency ↓'s

Summer - Fall RST Captures--Hatchery StW

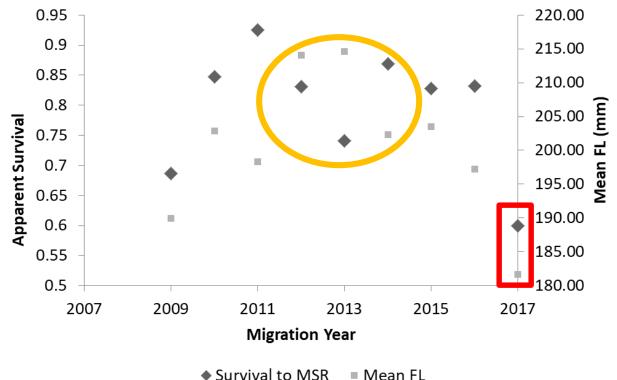
Impacts on Wild Steelhead

release group (year y)


- McMichael et al. (1999) observed displacement in 79% of hatchery vs. wild contests—"Hatchery steelhead behaviorally dominated wild *O. mykiss* in most situations."
- ISRP (2008) noted "yearling 'residuals' may compete with and displace wild underyearling parr, but die over summer (likely due to physiological reasons)"

MONTH	CF
July	1.04
August	0.91
September	0.91
October	0.86
March	0.86

Effects of Residuals


- Residuals may consume native salmonid fry
- Competition for prey resources
- Displacement from rearing habitat
 - Dispersal up to 21 km upstream from release site (Jonasson et al. 1995)
 - Kennedy (ORAFS 2016) noted
 32% of hatchery release
 occupied area between release
 area and screw trap in
 Abernathy Creek (≈4km)
- Negative interactions with wild fish (McMichael et al. 1999; Kennedy ORAFS 2016)

Apparent Survival, Length

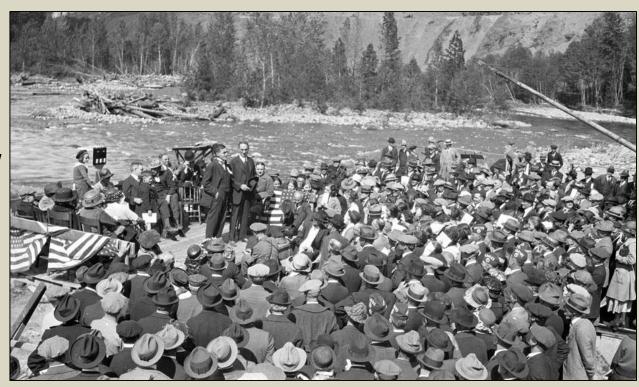
 φ₁: surrogate to estimate potential for non-migratory behavior?

Conclusions

- Overall rate of residualism for FW2 appears relatively low (<2% of annual release group)
 – Estimate is crude at best
- A higher proportion of non-smolts appears to have a detrimental effect on wild parr

2018 outmigration pending

- Non-migrant component not captured very well in Larsen et al. study
 - Sample size?
 - Sample method?
 - Real-time stress response not captured?
 - Non-migrants not always defined by FL<150mm

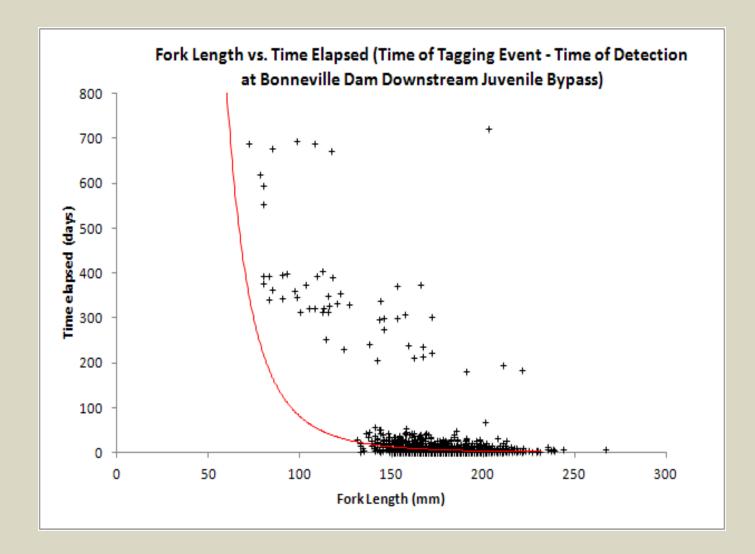

Management Implications

- Size grading and removal of non-smolt hatchery steelhead recommended
 - SAR rates for undersized fish poor (Snow et al. 2013)
 - Implement a true volitional release strategy and remove non-migrants
 - Christie (OSU Blouin Lab) estimated 1% of gene flow from residual hatchery fish, but 20% from resident O.mykiss
 - Non-smolts can be transferred to impoundment
- Acclimate and release lower in the river
 - Current release: rm 21.2
 - Experimental release: rm 4.6
 - Dispersal up to 21 km upstream from release site (Jonasson et al. 1995)
- Rear hatchery smolts to age 2 (Tatara et al.)

Acknowledgements

- Bonneville Power
 Administration
- ODFW Mid-Columbia District and Hood River Program staff
- Joshua McCormick, ODFW
- CTWSRO
- USGS
- ODFW Restoration and Enhancement Program
- PTAGIS (Pacific States Marine Fisheries Commission)
- NOAA Fisheries

Confederated Tribes of the Warm Springs Indian Reservation of Oregon



QUESTIONS

19-23

