Factors Limiting Growth of Juvenile Anadromous and Resident Oncorhynchus mykiss in the Duckabush and Hamma Hamma Rivers, WA.

Gary W. Marston

Washington Department of Fish and Wildlife

Acknowledgements

- Dave Beauchamp
- Thomas Quinn
 - Barry Berejikian
- Beauchamp Lab
- WDFW Scale and Aging Lab
- WDFW Hatchery Evaluation and Assessment Team
- Joy Lee

NG LIVE

THE

Restoring

KINGS

- Rick Endicott
- Rob Endicott
- Katy Doctor
- Chris Ringlee
- Many others...

Background

- Coast-wide steelhead populations have declined in abundance over the past century.
- The Puget Sound DPS was listed as threatened in 2007.
 - Prior to the listing Western Hood Canal population segment was at 1.7% of historic abundance.
 - Supplementation program in started in the late 1990's.
- Juvenile steelhead spend 1-3 years in freshwater and this may be a critical period for overall survival of steelhead.
 - Observed annual freshwater survival rates in Hood Canal watersheds low (~6% to 20%).
 - Decline with age in the upper reaches.
 - Improve with age in the lower reaches.

Background: Project Locations

Duckabush River and Hamma Hamma Rivers, drain the eastern slope of the Olympic Mountains.

- Rain/ Snow dominated
- Land use is minimal in both watersheds, primarily: logging and recreational.
- Both watersheds have barrier waterfalls.
 - Rkm 4.4 Hamma Hamma
 - Rkm 12.6 Duckabush
- Rainbow trout populations above the barriers and mixed rainbow trout and steelhead populations below.
 - Appear to have abundant rainbow trout populations.

Growth Potential of O. mykiss in freshwater

- **Objective:** Determine the growth performance for each age class of *O. mykiss* in the Duckabush and Hamma Hamma Rivers.
 - Are abiotic (temperature) or biotic (prey base) factors limiting growth?
- Take a bioenergetics approach to determine if and where annual growth is limited.
- Provides daily estimates of:
 - Energy needs
 - % maximum consumption rate (indicator of food availability)
 - Total biomass of invertebrates consumed

Bioenergetics Modeling Framework

2. Diet Composition and Prey Supply -Methods

- Fish diets were collected from a subsample of fish via gastric lavage during the summer/ fall of 2015.
 - June, August, September (all reaches) and October (lower rivers only)
- All diet items are identified to the order level and group by energy content.

2. Diet Composition

Month and Watershed

Prey Supply Methods

The prey supply was analyzed by sampling drift invertebrates.

- Collected during June, August and September of 2015, in areas that correspond with fish collection sites.
 - Riffle habitat (<0.5 m deep, > 0.3 m/s velocity).
- Daily prey supply was calculated by multiplying drift (g)/hour by the hours of daylight between civil twilight.
 - Converted to prey energy available (J) and compared with the dietary needs to attain the observed growth.
- A selectivity analysis using Manly's α compared prey items in diet with drift sample collections.

Prey Supply

Reach

Prey Selectivity

3. Growth: 2014 Length Frequencies

Bioenergetic Model Results

Consumption rate: Annual % Cmax

Reach	Age 1 to 2	Age 2 to 3	Age 3-4
Above-barrier Duckabush	28.2	29.1	32.3
Upper below-barrier Duckabush	25.4	26.7	31.7
Lower below-barrier Duckabush	20.1	21.7	28.1
Above borrier llemme llemme	74.4	20.4	24.2
Above-barrier Hamma Hamma	26.6	29.4	31.2
Lower below-barrier Hamma Hamma	19.6	22.5	25.0
(Skagit River Range 20-28%) (Thompson and Beauchamp 2016)			

Model Results - Annual Growth

Upper River Growth Sensitivity

Lower River Growth Selectivity

Conclusions

- Overall consumption rates are low indicating growth limitations are occurring.
 - Cold temperatures may limit late-fall to spring growth, but summer temperatures are near optimal.
 - There is very little scope for growth for age-2 and older fish in the upper watersheds.
 - Lower watersheds are less limited than the upper watersheds.
 - Prey quality and quantity appears to have a significant effect on growth, particularly for older fish.
- Growth limitations are likely influencing the low freshwater survival rates observed in the watersheds.
- Delayed smoltification due to poor growth opportunities and high freshwater mortality may be a significant factor limiting these populations.

Questions?

