Life history diversity of steelhead (*O. mykiss*) in two coastal Washington watersheds

2018 Pacific Coast Steelhead Management Meeting

Jason Hall*,Todd Bennett, Karrie Hanson, and George Pess (NOAA Northwest Fisheries Science Center), Raymond Moses and Mike McHenry (Lower Elwha Klallam Tribe), Philip Roni** (Cramer Fish Sciences), John McMillan (Trout Unlimited), and William Ehinger (Washington Department of Ecology),

*Now with Cramer Fish Sciences Email: jason.hall@fishsciences.net Phone: 206-960-4585

**Work completed with NOAA Northwest Fisheries Science Center

Background

- Steelhead express the most life history diversity
- Portfolio Effect: Diversity spreads risk over space/time
- Declining Steelhead populations
- Life history diversity is key to recovery

NOAA-NWFSC Tech Memo-27 (1996): Status Review of West Coast Steelhead

East Twin and West Twin River

- Declining Steelhead returns
- Strait of Juan de Fuca IMW complex
- Watershed scale restoration and responses
- Long-term monitoring of habitat and fish (2005-present)

Fish Monitoring in the Straits IMW with PIT tags

Study Questions

- What Steelhead life history types are present?
- What is the relative success of different life histories?
- What factors related to life history expression?
- How can our results inform recovery planning?

Anadromous O. mykiss life histories observed

- Over 20 different life histories observed with variations in...
 - Age/Season of juvenile migration
 - Years spent in ocean
 - Timing of return
 - Iteroparity
- Some less common life histories also observed...
 - Non-natal stream rearing
 - Half-pounders
- Not all appear to have produced adults...

Freshwate

Fall parr migrants verses yearling type migrants

 Most juveniles migrate without overwintering

 Adults only observed from yearling migrants (age1-3)

- Smolt to Adult Return Rates
 - Age0: 0-0.0043
 - Age1: 0.0004-0.0127
 - Age2: 0.0164-0.0816
 - Age3: 0.0019-0.3603

- Fall parr vs. yearling
- Exploratory approach
- All subsets binary logistic regressions with AICc selection
- Considered several predictors
 - Length at tagging
 - Distance from river mouth
 - Tagging year and river
 - Contributing adult escapement
 - CV of spring river temp and flow

- Temporal pattern: Decreasing probability of overwintering
- *Size at tagging*: Smaller fish more likely to overwinter
- *Spatial pattern:* fish farther upriver more likely to overwinter
- Density dependence: Higher densities increase probability of overwintering

- Temporal pattern: Decreasing probability of overwintering
- *Size at tagging*: Smaller fish more likely to overwinter
- *Spatial pattern:* fish farther upriver more likely to overwinter
- Density dependence: Higher densities increase probability of overwintering

- Temporal pattern: Decreasing probability of overwintering
- *Size at tagging*: Smaller fish more likely to overwinter
- Spatial pattern: fish farther upriver more likely to overwinter
- Density dependence: Higher densities increase probability of overwintering

- Temporal pattern: Decreasing probability of overwintering
- *Size at tagging*: Smaller fish more likely to overwinter
- *Spatial pattern:* fish farther upriver more likely to overwinter
- Density dependence: Higher densities increase probability of overwintering

Density dependence and productivity

• Summer cohort size decreases with increasing spawner density

• **AND...**Smaller fish were more likely to overwinter

• **BUT...** increased spawner density also reduced yearling production

• What about summer parr abundance?

Density dependence and rearing capacity

• Yearling production decreases with increasing spawner density...

• Summer parr abundance is not related

• Density dependent effects happen before summer tagging

• Suggests that rearing capacity is limiting

Declining yearling type migrant production

 Declining yearling production also may restrict recovery

 Patterns similar between watersheds

- Restored (East Twin) vs. control (West Twin)
- Limited by summer low flows?

Conclusions

• PIT tag monitoring approach can characterize life history diversity

• PIT tagging provided more information than just smolt trapping

• Linking returning adults to all juvenile migration patterns is critical

• Rare life histories were documented with juvenile movements between streams and juveniles using ocean rearing habitats (half-pounders)

Conclusions

- Fall parr migrations were missed by spring smolt traps
- Fall parr are largest component of production and are increasing
- Fall parr did not appear to contribute to adult returns
- Fall parr may provide small contribution...continued monitoring?
- Maintenance of fall parr life history may contribute to resilience

Conclusions

- Yearling type migrants were only life history with observed adults
- However, yearling type migrant production declining
- Production of yearling type migrants limited by rearing habitat?

Acknowledgements

- A large cast of staff and volunteers doing the real work...
- Funding and Partners:
 - US EPA
 - Lower Elwha Klallam Tribe
 - WDOE
 - IMW Program
- Access:
 - US Forest Service
 - Merrill and Ring
 - Inka Fausett
 - Josey Paul
 - Dave Paul
 - LaFarge
- Weyerhaeuser:
 - Jason Walter
 - Bob Bilby
- NOAA:
 - Gabriel Brooks
 - Earl Prentice
 - Bruce Jonasson
 - Sandy Downing

Project reports and publications for further reading on the Strait of Juan de Fuca IMW project

- Hall, J.E., M. McHenry, W.J. Ehinger, T. Bennet, K. Hanson, M. Liermann, and G. Pess. 2018. Strait of Juan de Fuca Intensively Monitored Watersheds 2017 Synthesis Report. Prepared for the Salmon Funding Recovery Board's Monitoring Panel. Olympia, WA.
- Hall, J., P. Roni, T. Bennett, J. McMillan, K. Hanson, R. Moses, M.
 McHenry, G. Pess, and W. Ehinger. 2016. Life history diversity of steelhead in two coastal Washington watersheds. Transactions of the American Fisheries Society 145:990–1005.
- Ehinger, W. J., J. Hall, M. McHenry, K. Hanson, T. Bennett, M. Liermann,
 G. Pess, K. Krueger. 2016. Strait of Juan de Fuca IMW Annual
 Assessment. Prepared for the Salmon Funding Recovery Board's
 Monitoring Panel. Olympia, WA.
- Bennett, T. R., P. Roni, K. Denton, M. McHenry, and R. Moses. 2015.
 Nomads no more: early juvenile Coho Salmon migrants contribute to the adult return. Ecology of Freshwater Fish 24:264–275.
- Roni, P., T. R. Bennett, R. Holland, G. R. Pess, K. M. Hanson, R. Moses, M. McHenry, W. Ehinger, and J. Walter. 2012. Factors affecting migration timing, growth, and survival of juvenile Coho Salmon in two coastal Washington watersheds. Transactions of the American Fisheries Society 141:890–906.
- Bennett, T., R. Wissmar, and P. Roni. 2011. Fall and spring emigration timing of juvenile coho salmon from East Twin River, Washington. Northwest Science 85:562–570.

Supporting Slides

Study Area: Strait of Juan de Fuca IMW Complex

O. mykiss Life history diversity

High life history diversity

- Residency
- Anadromy
- Iteroparity
- Portfolio Effect: Spreads risk over space/time
- Key to recovery of declining steelhead populations

Variability in Species' Life Histories

Freshwater LH's x ocean LH's x run timing (spring v. fall run)

	Steelhead	Chinook	Coho	Chum	Pink				
Freshwater Life Histories	4	2	1	1	1				
Ocean Life Histories	4	3	3	3	1				
Run Timing	2	2	1	1	2				
Total	32	12	3	3	2				
(Credit: J. McMillan)									

Resident rainbow life histories appear uncommon

Factors influencing survival to migration

- Size at tagging
 - Larger fish more likely to survive to migration
- Temporal pattern
 - Increasing probability of survival to migration
- Density dependence
 - Increased spawner density reduces probability of survival to migration

AICc Model Selection Tables

Probability of being detected as a migrant																
River	Year	Year	Year	Year	Year	Year	CV	CV	Escape-	с	Dictorco	Чf	loglik		dalta	woight
(West Twin)	(2006)	(2007)	(2008)	(2009)	(2010)	(2011)	Flow	Temp	ment	FL	Distance	u	TOBLIK	AICC	ueita	weight
	0.495	0.627	0.906	0.076	1.831	1.941	0.188	0.477	-0.859	0.382	-1.205	12	-5865.53	11755.10	0.00	0.34
	0.509	0.710	0.835	0.195	1.595	1.591		0.427	-0.596	0.379	-1.221	11	-5866.62	11755.30	0.18	0.31
0.076	0.473	0.769	0.902	0.078	1.795	1.742		0.592	-0.646	0.380	-1.217	12	-5866.15	11756.30	1.25	0.18
0.024	0.485	0.655	0.920	0.051	1.870	1.953	0.169	0.525	-0.848	0.382	-1.206	13	-5865.49	11757.00	1.93	0.13
-0.137	0.640	0.421	0.730	0.327	1.377	1.729	0.255		-0.904	0.382	-1.202	12	-5868.13	11760.30	5.20	0.03
-0.086	0.655	0.560	0.663	0.430	1.154	1.345			-0.589	0.379	-1.219	11	-5869.75	11761.50	6.43	0.01
Probability of a migrant leaving at age-1 or older																
River	Year	Year	Year	Year	Year	Year	CV	CV	Escape-	-1	Distance	٩t	loglik		dalta	woight
(West Twin)	(2006)	(2007)	(2008)	(2009)	(2010)	(2011)	Flow	Тетр	ment	FL	Distance	ui	IOGLIK	AICC	uerta	weight
0.538	-0.436	-0.252	-1.680	-0.458	-2.316	-2.952	-0.668		1.106	-0.363	0.378	12	-1658.24	3340.60	0.00	0.47
0.652	-0.543	-0.072	-1.525	-0.653	-1.938	-2.758	-0.723	0.411	1.143	-0.364	0.378	13	-1657.85	3341.80	1.24	0.25
0.435	-0.353	-0.620	-1.495	-0.856	-1.571	-1.668				-0.343	0.434	10	-1661.99	3344.10	3.47	0.08
0.515	-0.221	-0.541	-1.580	-0.961	-1.628	-1.712	-0.219			-0.352	0.437	11	-1661.13	3344.40	3.75	0.07
0.411	-0.435	-0.599	-1.482	-0.732	-1.668	-1.865			0.189	-0.342	0.423	11	-1661.80	3345.70	5.10	0.04
0.598	-0.296	-0.415	-1.463	-1.120	-1.331	-1.534	-0.248	0.306		-0.352	0.439	12	-1660.91	3345.90	5.33	0.03
0.467	-0.393	-0.571	-1.440	-0.919	-1.438	-1.588		0.133		-0.343	0.434	11	-1661.95	3346.00	5.39	0.03