The U.S. West Coast Groundfish Bottom Trawl Survey

Northwest Fisheries Science Center
Fisheries Resource Analysis and Monitoring Division
NOAA, 2725 Montlake Blvd. E, Seattle, WA, 98112, U.S.A.

Survey Team: Keith Bosley, Mark Bradburn, John Buchanan, John Harms, Dan Kamikawa, Aimee Keller, Victor Simon, Vanessa Tuttle
Mission: provide the scientific basis for the management of U.S. West Coast groundfish stocks and their ecosystems

Tools: fishery-independent resource survey, fishery monitoring, biological investigations, and population models

Survey goal: provide data for assessment purposes on the distribution and abundance of commercially important West Coast groundfish, including changes in species composition, size and age with geographic area, depth and time
Background

The NWFSC assumed responsibility for the West Coast Groundfish Bottom Trawl Survey in 1998; earlier west coast surveys conducted by the Alaska Fisheries Science Center (AFSC)

History

1977 – 2001: AFSC’s triennial shelf survey (55 - 500 m) using chartered commercial AK fishing trawlers (>110 ft)

1984 – 2001: AFSC’s West Coast semi-annual slope (183 -1,280 m) trawl survey using FRV Miller Freeman (>200 ft)

1998 – 2002: NWFSC annual slope (183 -1,280 m) trawl survey using smaller (< 93 ft) chartered West Coast (CA, OR, WA) commercial fishing vessels

2003 – present: NWFSC survey expanded to cover shelf and slope waters (55 – 1,280 m) from US-Can to US-Mexico borders
West Coast Survey

• Annually chartered 4 west coast fishing vessels, 65-96’ (19.8 – 29.3 m)
• 2 passes down the entire coast (mid-May – July; mid-Aug – Oct)
• Fish at depths 55 – 1,280 m
• Target tow speed 2.2 kt
• Target tow duration 15 minutes
• Fish during daylight hours
• Average 4 - 5 tows per day
• 160 days at sea; ~760 tows yr⁻¹
• 3 scientists, 3 crew
Stratified-Random Sampling Design

- US Canada border to US Mexico border
- Survey area sub-divided into ~11,500 equally sized cells (1.5 X 2.0 nm)
- Each of 4 vessels randomly assigned a set of 188 cells, secondary and tertiary cells also assigned (not shown)
- 2 geographic strata: 80% N of Pt. Conception (34° 30’N), 20% S
- 3 depth strata (55-183 m, 184-549 m; 550-1,280 m)
- Minimum 30 tows/stratum
Trawl Search and Selection Procedure

- Search within a randomly selected, previously specified cell
- Search within a specified depth range
- Limit search for trawlable ground 1-hr per cell
- If no trawlable site found within 1-hr, move to secondary cell and repeat 1-hr search
- Repeat at tertiary site if needed
Methods

- All catch sorted, identified to species and weighed
- Selected species individually sexed and measured
- Stomachs, ovaries, age structures, DNA, tissue samples collected
- Wireless back deck with electronic scales, fish meter boards, bar code scanner
- Trawl performance monitored via sensors (net width, height, speed, door spread, distance fished, position of trawl transect, bottom contact, temperature, depth, salinity, DO, etc.)
- Trawl and catch data input via customized software
- Average catch 300 kg/tow (range <1 to 18,000 kg/tow)
- Special projects undertaken
<table>
<thead>
<tr>
<th>ROUND/FISH</th>
<th>ROCK/FISH</th>
<th>ROCK/FISH</th>
<th>ROCK/FISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabezon</td>
<td>Aurora rockfish</td>
<td>Canary rockfish</td>
<td>Squarespot rockfish</td>
</tr>
<tr>
<td>Kelp greenling</td>
<td>Bank rockfish</td>
<td>Chameleon rockfish</td>
<td>Starry rockfish</td>
</tr>
<tr>
<td>Lingcod</td>
<td>Black rockfish</td>
<td>Chilipepper</td>
<td>Striped rockfish</td>
</tr>
<tr>
<td>Pacific cod</td>
<td>Black/yellow rockfish</td>
<td>China rockfish</td>
<td>Swordspine rockfish</td>
</tr>
<tr>
<td>Pacific hake</td>
<td>Blue rockfish</td>
<td>Copper rockfish</td>
<td>Tiger rockfish</td>
</tr>
<tr>
<td>Sablefish</td>
<td>Bocaccio</td>
<td>Cowcod</td>
<td>Treefish</td>
</tr>
<tr>
<td></td>
<td>Bronzespotted rockfish</td>
<td>Dusky rockfish</td>
<td>Vermilion rockfish</td>
</tr>
<tr>
<td></td>
<td>Brown rockfish</td>
<td>Dwarf-red rockfish</td>
<td>Widow rockfish</td>
</tr>
<tr>
<td></td>
<td>Calico rockfish</td>
<td>Flag rockfish</td>
<td>Yelloweye rockfish</td>
</tr>
<tr>
<td></td>
<td>California scorpionfish</td>
<td>Freckled rockfish</td>
<td>Yellowmouth rockfish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gopher rockfish</td>
<td>Yellowtail rockfish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grass rockfish</td>
<td>Puget Sound rockfish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenblotched rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenspotted rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenstriped rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Halfbanded rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harlequin rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Honeycomb rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kelp rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLAT/FISH</td>
<td>SHARKS</td>
<td>ROCK/FISH</td>
<td>GRENADIERS</td>
</tr>
<tr>
<td>Arrowtooth flounder</td>
<td>Big skate</td>
<td>Canary rockfish</td>
<td>Pacific rattail</td>
</tr>
<tr>
<td>Butter sole</td>
<td>California skate</td>
<td>Chameleon rockfish</td>
<td></td>
</tr>
<tr>
<td>Curlfin sole</td>
<td>Leopard shark</td>
<td>Chilipepper</td>
<td></td>
</tr>
<tr>
<td>Dover sole</td>
<td>Longnose skate</td>
<td>China rockfish</td>
<td></td>
</tr>
<tr>
<td>English sole</td>
<td>Soupfin shark</td>
<td>Copper rockfish</td>
<td></td>
</tr>
<tr>
<td>Flathead sole</td>
<td>Spiny dogfish</td>
<td>Cowcod</td>
<td></td>
</tr>
<tr>
<td>Pacific sanddab</td>
<td></td>
<td>Dusky rockfish</td>
<td></td>
</tr>
<tr>
<td>Petrale sole</td>
<td></td>
<td>Dwarf-red rockfish</td>
<td></td>
</tr>
<tr>
<td>Rex sole</td>
<td></td>
<td>Flag rockfish</td>
<td></td>
</tr>
<tr>
<td>Rock sole</td>
<td></td>
<td>Freckled rockfish</td>
<td></td>
</tr>
<tr>
<td>Sand sole</td>
<td></td>
<td>Gopher rockfish</td>
<td></td>
</tr>
<tr>
<td>Starry flounder</td>
<td></td>
<td>Grass rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenblotched rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenspotted rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenstriped rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Halfbanded rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harlequin rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Honeycomb rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kelp rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCK/FISH</td>
<td>RATFISH</td>
<td>ROCK/FISH</td>
<td>MORIDS</td>
</tr>
<tr>
<td>Rosethorn rockfish</td>
<td>Ratfish</td>
<td>Canary rockfish</td>
<td>Finescale codling</td>
</tr>
<tr>
<td>Rosy rockfish</td>
<td></td>
<td>Chameleon rockfish</td>
<td></td>
</tr>
<tr>
<td>Rougheye rockfish</td>
<td></td>
<td>Chilipepper</td>
<td></td>
</tr>
<tr>
<td>Sharptail rockfish</td>
<td></td>
<td>China rockfish</td>
<td></td>
</tr>
<tr>
<td>Shortbelly rockfish</td>
<td></td>
<td>Copper rockfish</td>
<td></td>
</tr>
<tr>
<td>Shortraker rockfish</td>
<td></td>
<td>Cowcod</td>
<td></td>
</tr>
<tr>
<td>Shortspine thornyhead</td>
<td></td>
<td>Dusky rockfish</td>
<td></td>
</tr>
<tr>
<td>Silvergray rockfish</td>
<td></td>
<td>Dwarf-red rockfish</td>
<td></td>
</tr>
<tr>
<td>Sunset rockfish</td>
<td></td>
<td>Flag rockfish</td>
<td></td>
</tr>
<tr>
<td>Speckled rockfish</td>
<td></td>
<td>Freckled rockfish</td>
<td></td>
</tr>
<tr>
<td>Splitnose rockfish</td>
<td></td>
<td>Gopher rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grass rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenblotched rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenspotted rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenstriped rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Halfbanded rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harlequin rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Honeycomb rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kelp rockfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environmental Variables Measured

On Vessel
- wind speed: anemometer

On Trawl
- Dissolved oxygen
- Salinity
- Temperature
- In vivo fluorescence
- Optical backscatter

On Trawl and Vessel
- Irradiance
Standardized Protocols

Aberdeen Trawl

- Height 4.5 m; width 15 m
- Mesh 5.5 inches (1.5 inches in cod end)
- Headrope length 85 feet
- Footrope length: 104 feet
- Cookies 8-10 inch diameter
- Average area swept per tow 1.85 hectare
Trawl Performance Monitoring: Acoustic and Bottom Contact Sensors

- Dual/triple beam transducers mounted on vessel hull (through hull design)
- GPS and gyroscope measure vessel location and heading, respectively
- Simrad trawl eye and wing sensors mounted on net, doors
- Bottom contact sensors mounted on footrope (port and starboard) to monitor bottom contact, net touch down and lift off
- SeaBird 39 and 19+ mounted on net

Sensors supplied by NWFSC
Simrad ITI and PI44 systems integrate data streams of net width, net height, trawl position, depth of head rope, distance to sea floor, temperature, door spread, distance fished, net configuration.
Customized Software

TowLogger – log operation and environmental data during tow

FSCS – input sampling data

Integrator – visualize sensor data and assess tow quality

DataSquirrel – compile and upload operational and fish data into database

SurveyEdit – review and edit data at sea

DataAnalyzer – post survey data processing
Spatial Coverage 2003 - 2008

NWFSO West Coast Groundfish Survey (2003-2008)

- 1 sample; n=2588
- 2 samples; n=504
- 3 samples; n=61
- 4 samples; n=3
1. Hypoxia Studies offshore Oregon (annually since 2007) with some coverage back to 2003

2. Southern California basin study (2008)

Hypoxia Study 2007 – 2010 - Oregon

- FV Excalibur
- 4 scientists; 3 crew
- 2-3 days (late Aug – early Sept)
- sample along 2 depth contours (50 to 80 m) in vicinity of low oxygen region off Newport
- catch sorted to species, weighed
- selected species sexed, measured
- stomachs, tissue and otoliths collected for selected species
- condition, length, weight measured for Dungeness crab
- dissolved oxygen, depth, temperature, salinity, measured during each tow via net mounted gear (seabird 19+)
Total CPUE versus average bottom DO

CPUE (kg ha\(^{-1}\)) = Catch (kg) / Area Swept (ha)

\[
\ln \text{CPUE (kg ha}^{-1}) = 0.70 \times \ln \text{DO (ml l}^{-1}) + 4.38
\]

\[
R = 0.47
\]
Number of species per tow versus Average bottom DO along the tow tract

Includes: demersal fish and benthic invertebrates
Summary of other results in hypoxic bottom water off Oregon

- CPUE (ln, kg ha\(^{-1}\)) for 11 of 17 groundfish species significantly related to near bottom DO (ln, mg l\(^{-1}\)) concentration

- CPUE ((ln, kg ha\(^{-1}\)) for 5 of 8 benthic invertebrate species significantly related to near bottom DO (ln, mg l\(^{-1}\)) concentration

- Condition factors for 5 of 6 groundfish species increased significantly at higher oxygen levels (mg l\(^{-1}\)) within the hypoxic region (except Dover sole)

- Condition factors for Dungeness crab increased significantly with increased oxygen levels (mg l\(^{-1}\)) within the hypoxic zone
39 stations sampled
- 19 in Santa Barbara Basin
- 9 in Santa Monica Basin
- 11 in adjacent areas

Depth range: 59 – 1,100 m

Near Bottom DO range: 0.04 – 4.22 ml l\(^{-1}\)
or 1.8 – 188.2 µmol kg\(^{-1}\)

Hypoxic: 26 of 39 stations
- 14 of 19 in Santa Barbara Basin
- 6 of 9 in Santa Monica Basin
- 7 of 11 in adjacent areas
California Basin Study - 2008

Total CPUE versus average bottom DO

Hypoxic Stations

2008 - Santa Barbara Basin

\[y = 2.02 x + 6.19 \]

\[R = 0.94 \]

2008 - Santa Monica Basin

\[y = 1.79 x + 4.48 \]

\[R = 0.86 \]

Adjacent Areas

Southern California Basins

\[y = 1.87 x + 5.49 \]

\[R = 0.89 \]

CPUE (kg ha\(^{-1}\)) = Catch (kg) / Area Swept (ha)
Coast Wide Study – 2009

- 360 stations sampled
- Depth range: 59 – 1,204 m
- Near Bottom DO: 0.08 – 4.25 ml l⁻¹
- Hypoxic stations (DO < 1.43 ml l⁻¹)

 Pass 1: 117 of 176 stations
 Pass 2: 123 of 184 stations

funding: NOAA’s Office of Ocean Exploration & Research through West Coast & Polar Regions Undersea Research Center
Coast Wide Study 2009

Thanks to S. Pierce
2009 Coast Wide Study – Pass 2

Total CPUE versus average bottom DO by depth
Ongoing and Future Hypoxia Research

- continue collection of near bottom DO during annual trawl survey (~750 station per year)
- continue 2-3 day hypoxia study off Newport, OR
- conduct species-specific analyses coast wide
- define species-environmental relationships (light, oxygen, temperature, salinity, fluorescence, backscatter, seafloor roughness and geographic variables) using a modified version of Generalized Additive Models
- stomach content and tissue studies on selected species