Using physiological indices to estimate residualism rates in hatchery reared winter-run steelhead trout, *Oncorhynchus mykiss* in the Hood River, Oregon

Don Larsen
NOAA Fisheries

Mollie Middleton and Jon Dickey
UW, School of Aquatic and Fishery Sciences

Ryan Gerstenberger and Chris Brun
Confederated Tribes of the Warm Springs Reservation

Penny Swanson
NOAA Fisheries

Photo courtesy IDFG
Steelhead, *Oncorhynchus mykiss*, life history

Maturation & spawning

- *Anadromous Steelhead*
 - Ocean (1–3 years)
 - Estuary/early marine (2 weeks)
 - Smolt (age 1 -3)

- *Resident Rainbow Trout*
 - Maturation in fresh water

Photo courtesy Matt Cooper
Co-managers from the Confederated Tribes of the Warm Springs Reservation (CTWSR) and ODFW release ~50K Hood R. winter run steelhead annually from the Parkdale Fish Facility and East Fork Sand Trap combined.
Residualism by Hatchery Steelhead

“.........reviews recommended that the project sponsors develop M&E protocols to assess the extent to which the residualism of hatchery steelhead is resulting in the displacement of wild fish from Hood River habitat....... These yearling residuals may compete with and displace wild underyearling parr....may contribute little or nothing to subsequent smolt yields, while a few likely mature precociously and spawn with wild fish, thus decreasing fitness of wild spawners....contributing toward hybrid swarms with cutthroat trout........

A good starting pointestimate the number of residuals the hatchery is producing.......or try to “forecast” life-history types.
What are the possible life-history options for Hood River Winter run Steelhead?
Reproductive Endocrine Axis

- Photoperiod
- Temperature
- Olfactory & visual cues

Neuropeptides

Gonadotropins (FSH & LH)

11-ketotestosterone
Anti mullerian hormone (AMH) & growth factors (i.e. IGF-3)

Body Energy Stores
Metabolic Fuels
Onset of Puberty in Salmon

Gonadotropin (FSH and LH) synthesis & secretion

Onset of spermatogenesis (meiosis) in the testis

11-KT

AMH

IGF-3
Methods

- Collect 300 Hood River Winter steelhead at Parkdale Facility in May 2012, 2013 and 2014 just prior to release
- Measure length, weight, sex, gonad weight for GSI, visual sexual development state, visual smolt state
- Collect
 - Gill tissue from males and females
 - Plasma from all males
 - Pituitary glands from all males
 - Testes from all males
Physiological tools to determine life-history

- Sex of the fish
- Testes histology – characterize cell types
- Male GSI
- Male Plasma 11-KT levels
- Pituitary mRNA transcript for FSH and LH in males
- Testes mRNA for AMH and IGF-3 (BY 2011 and 2013) in males
- Male and female Gill Na+/K+-ATPase levels
- Male and female external appearance – parr marks or silvering
 - 1 = parr, 2 = transitional, 3 = smolt
Results

- Sex - 154 females, 146 males (51:49) – BY 2011
 - 165 females, 135 males (55:45) – BY 2012
 - 149 females, 158 males (49:51) – BY 2013
- There were only 6 immature parr (smolt index = 1) and all were females
- All other females were immature smolts
- Smolts were the most common life-history in all years
- In males, maturation initiates before clear increases in GSI
- Using histology we recognized 6 different life-history stages (or types) in both brood years
- Other parameters were required to support the histological results
Stage 0 – Immature Smolt

Undifferentiated Type A Spermatogonia
Stage-1, 2, and 3 male fish are all at varying stages of initiating maturation for next spring.

Stage 1 – Early initiation of maturation

- Type A Spermatogonia
- Differentiated Type A Spermatogonia

Stage 2 – Mid-initiation of maturation

- Type B Spermatogonia

Stage 3 – Mid-initiation of maturation

- Spermatocytes
- Spermatids
Attempted Maturation

Spermatozooa

Type B Spermatogonia
GSI is low in smolts and increases with maturation.
Plasma 11-KT is low in smolts and increases with maturation.
Pituitary FSH mRNA is low in smolts and increases with maturation.
Pituitary LH mRNA is low in smolts and increases with maturation.
Testicular IGF3 mRNA is low in smolts and increases with maturation.

BY 2011
- Initiated Maturation

Histological Stage
- 0
- 1
- 2
- 3
- PP
- Att. Mat.

Relative expression igf3
- Not measured

BY 2012
- a
- b
- bc

BY 2013
- a
- b

Histological Stage
- 0
- 1
- 2
- 3
- PP
- Att. Mat.
Testicular AMH mRNA is high in smolts and decreases with maturation.

BY 2011

BY 2012

Not measured

BY 2013
What about smolting?
Smolt Index by Size by Sex

BY 2011

BY 2012

BY 2013
Gill ATPase increased with higher smolt index

BY 2011

Gill Na+/K+-ATPase

BY 2012

Gill Na+/K+-ATPase

BY 2013

Gill Na+/K+-ATPase
Combine all indices

size
sex
smolting
male maturation

to categorize each fish according to life-history type
Conclusions

- We have demonstrated the efficacy of using physiological indices at a single time point to forecast steelhead life-history types.
- Attempted maturation appears to be a real phenotype.
- Residualism estimate ~3-5% = about 1,500-2,500 per 50,000 fish.
- M-2 (a.k.a. 1 Salts or “half-pounders”) ~ 8% = 5,500 per 50K.
- Challenging question – do any of the M-2’s stay in FW (RBT)?
Two more reasons to care about residuals

Maturing Testes

Yellow Jackets - Good!

Chinook eggs - Bad!
Acknowledgements

- Louisa Harding (UW), Lindsay Brewer (CTWSR) – sampling
- Parkdale Fish Facility management and staff
- Graham Young (UW)
- Barry Berejikian, Chris Tatara, Jeff Atkins, Rob Endicott, Skip Tezak (NOAA) - BPA Hatchery Reform Project #199305600
- Bill Gale, Matt Cooper, Matt Hall, Robette Schmit (USFWS)-BPA Hatchery Reform Project #199305600
- Funding provided by BPA under project # 1988-053-03 administrated by Richard Golden.