Alternative steelhead smolt rearing strategies for locally derived broodstocks

NOAA FISHERIES

DEPARTMENT OF CON

CAND ATMOSA

5.0

Northwest Fisheries Science Center

Chris Tatara, Bill Gale*, Matt Cooper*, Penny Swanson, Don Larsen, Chris Pasley*, Mollie Middleton, Jon Dickey, Jeff Atkins, Matt Hall*, and Barry Berejikian

> 2014 Pacific Coast Steelhead Management Meeting March 18-20, 2014, Skamania, Washington

Steelhead program at WNFH

- Location: Winthrop, WA on Methow River
 - 54 miles from Columbia confluence
 - 524 miles from Pacific Ocean
 - Nine Columbia River dams
- Purpose
 - Mitigation for Grand Coulee Dam
 - Recover threatened upper Columbia River steelhead

Recovery actions for Upper Columbia steelhead

- Past program: Wells yearling smolts (S1)
- Switch to local Methow River broodstock
 - Requires change to the culture regime
 - Late spawn timing of Methow broodstock
 - Shortens growth window
 - Cold water temperatures at Winthrop NFH
 - Lower growth rates
 - Two year smolt rearing (S2)
- Compare S1 and S2 strategies to determine viability of switching exclusively to local broodstock.

Winthrop NFH steelhead smolt size at release

2010

2011

Evaluation of S1 and S2 steelhead smolts

- Outmigration (PIT tag detections)
 - Survival
 - Travel time
- Residualism
 - Precocious male maturation
 - Too small to smolt
- Prerelease subsampling
 - FL, WT, Sex, Smolt Index, tissues for physiological & genetic analyses

Outmigration Survival Data: SURPH

Outmigration Survival

Forced

Volitional

Selection on body size after release

Final smolt size affects survival to Columbia

Inter-annual variability of S1 smolt size

Wells S1 Fork Length
Methow S2 average release fork length

Travel time by reach

Puberty in male steelhead

- Initiation of maturation occurs 1 year before maturation
- Before development of secondary sexual characteristics
- Small differences in GSI between initiating males and immature males
- Large differences in GSI for between mature and immature males
- Develop indicators and verify with histology of testis

Reproductive Stages based on Histology

Indicators of male maturation status

Male steelhead reproductive state at release

Residualism

- PIT tag data
 - Compare size of released and detected S1 & S2 populations
- Annual field sampling (August and September)
 - Electrofishing, seining, angling
 - Spring Creek outfall of WNFH
 - Downstream reference reach of Methow River

Proportional representation of S1 & S2 residuals

Size at release and residualism

Reproductive status of male residuals S2 S1 Immature Maturing 62 13 29 82 21 55 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 2011 2012 2013

Conclusions: Survival and Travel Time

- WNFH can raise steelhead from a locally-sourced broodstock (S2)
 - Survival: $S2 \ge S1$
 - Travel time: S2 < S1
- Survival of S1 (co-mingled Wells stock) is
 - More variable than S2s and is contingent on rearing practices that maximize size at release
- Detections of migrating steelhead are inversely related to residualism

Conclusions: Residualism

- S1 & S2 residual populations are male biased
 - Regardless of release strategy
 - Most male residuals are maturing
- Residualism rates appear to be inversely related to size at release for S1 and S2 steelhead
- S1 residualism is likely due to growth rates insufficient to induce smoltification in 1 year
- S2 residualism is likely due to increased rates of precocial maturation

Costs? Benefits? Appropriateness?

Costs?

- Maybe 1 year production (S1→S2)
- Natural broodstock collection angling
- ↑ risk in culture (hold fish for 2 years)
- Slight increase in feed and labor

Benefits?

- Preserve life
 history variation
- Larger smolts and fewer residuals
- Natural age of smoltification
- Reduce size selection
- Higher SAR?
- Reduce hatchery/ wild ecological interactions

- When to use?
 - Transition to locally-derived broodstock
 - Late spawn timing
 - Cold hatchery water sources
 - Short hatchery culture season
 - Recovery of ESA listed populations

Acknowledgements

- Collaborators
 - USFWS staff of WNFH and Mid Columbia FRO
 - NOAA/NWFSC Manchester and Montlake
 - UW
 - USGS
 - WDFW
- Funding: BPA (project 1993-056-00), BOR, USFWS, NOAA

Two more reasons to care about residuals

S1 residual collected in Methow River 14 Sept. 2011

Maturing Testes - Bad

Yellow Jackets - Good

Residual Male Maturation Phenotypes

August 2013

Males with high GSI were a mixture of males that had matured the previous spring, or were maturing for the following spring

