Genetics 101 for Managers - An Introduction to GSI and PBT Technologies in Fisheries

Eagle Fish Genetics Lab (IDFG):
Craig Steele
Mike Ackerman
Matthew Campbell

Genetics in Fisheries Management

Long history of using genetic tools to study salmonids

- Determine distinct population segments and ESUs
- Evaluate hatchery impacts on wild stocks
- Determine genes underlying specific traits
- Stock Assessment
\checkmark Genetic stock identification (GSI)
\checkmark Parentage based tagging (PBT)

GSI has been in use for several decades

GSI studies began in the 1970's

Many on-going projects using GSI:

- Ocean fisheries (project Croos, Oregon State University)
- Juvenile survival in the estuary and ocean (NOAA)
- In-river harvest and dam passage (IDFG, CRITFC)

Genetic Stock Identification

GSI is a two-step process:

1. Generate baseline

- Characterize genetic profile of the contributing stocks (i.e. wild steelhead populations)

Building the Baseline:

Samples genotyped at 192 genetic markers

- Single Nucleotide Polymorphisms (SNPs)

Steelhead Baseline v2.0

- 4,145 samples
- 63 locations
- 10 genetic stocks
- UPSALM
- MFSALM
- SFSALM
- LOSALM
- UPCLWR
- SFCLWR
- PTLTCH
- IMNAHA
- GRROND
- LSNAKE

From Ackerman et al. 2013

Genetic Stock Identification:

GSI is two-step process:

1. Generate baseline

- Characterize genetic profile of the contributing stocks (i.e. wild steelhead populations)

2. Estimate composition of mixture

- Obtain genotype data from mixture samples to estimate contribution (e.g. fishery, juveniles, or escapement samples)

Projects using GSI baselines

- Adult Stock Composition:
- Columbia River Fisheries (Alan Byrne, IDFG)
- Escapement at Bonneville Dam (Jon Hess, critfc)
- Escapement at Lower Granite Dam (Bill Schrader, IDFG)
- Juvenile Stock Composition at:
- Lower Granite Dam (Bill Schrader, IDFG)
- Bonneville Dam (Jon Hess, CRITfC)

Run-Timing of Different Genetic Stocks

-Median fall passage dates
Mid. Frk. Salmon and S.F. Salmon: mid-September
Upper Clearwater and S.F. Clearwater: early- to mid- October

From Ackerman et al. 2013

Sex ratios of Genetic Stocks

$■$ \% Females \quad \% Males

From Ackerman et al. 2013

When to use GSI?

When to use GSI:

- used primarily for wild fish
- there is a lot of differentiation among reference groups
- assign fish to its genetic stock

What about PBT?

When to use PBT:

- used primarily for hatchery fish
- when the parents have been sampled/genotyped
- assign fish to individual parents

What is Parentage Based Tagging?

PBT uses similar techniques as those used in human parentage testing

Conception of PBT

A Description of Full Parental Genotyping

Report Submitted to the Pacific Salmon Commission

Eric C. Anderson* John Carlos Garza*

April 27, 2005

```
Copyright $2006 by the Genetics Society of America
DOL: 10.1534/genetics.105.048074
```

The Power of Single-Nucleotide Polymorphisms for Large-Scale Parentage Inference

Eric C. Anderson ${ }^{1}$ and John Carlos Garza

Fisheries Ecology Division, Southwest Fisheries Science Center, Santa Cruz, Califomia 95060
Manuscript received July 11, 2005
Accepted for publication December 8, 2005

Benefits of PBT

Provides same information as CWTs

- Run reconstruction (age, stock of returning adults)
- Stock composition of harvest

Tag recovery rates vastly improved

- Nearly 100\% tagging rate of hatchery fish

Many issues associated with other methods eliminated

- No tag loss
- Non-lethally interrogated
- Passive mark (no handling of juveniles needed)
- No differential mortality

Parental Based Tagging:

PBT is a also two-step process:

1. Generate parental baseline

- Genotype broodstock from contributing hatcheries

Snake River Steelhead

- Majority sampled in 2008
-All broodstock sampled since 2009

Snake River Chinook

- All Spring/Summer Chinook broodstock sampled since 2008

Building the Baseline:

Samples genotyped at 96 genetic markers

- Subset of the GSI loci

SNP marker development:

Identified 96 SNPs that provide accurate parentage assignments.
Even when tens of thousands of possible parents are included!!!

Steelhead

	Spawn Year				
	2008	2009	2010	2011	2012
Broodstock sampled	5,151	5,761	5,282	5,931	5,719
Genotyped	5,070	5,636	5,198	5,765	5,490
"Tagging" Rate of Offspring	96.9%	95.7%	96.9%	94.5%	92.2%
Smolts Produced *	~ 9.01 mil	$\sim 10.08 \mathrm{mil}$	$\sim 9.24 \mathrm{mil}$	$\sim 10.38 \mathrm{mil}$	$\sim \mathbf{\sim 1 0 . 0 1} \mathrm{mil}$
Smolts "Tagged"	$\sim 8.74 \mathrm{mil}$	$\sim 9.65 \mathrm{mil}$	$\sim 8.96 \mathrm{mil}$	$\sim 9.81 \mathrm{mil}$	$\sim 9.2 \mathrm{mil}$

[^0]
How many steelhead are we tagging?

- $\sim 70 \%$ of outmigrating steelhead in the Columbia River are hatcheryorigin fish
- 14.9 million hatchery steelhead released in the Columbia River basin each year
- Of these, 9.1 million are Snake River origin ($\sim 61 \%$)

Parentage Based Tagging:

PBT is a also two-step process:

1. Generate parental baseline

- Genotype broodstock from contributing hatcheries

2. Estimate composition of mixture

- Obtain genotype data from mixture samples to estimate contribution (e.g. fishery, juvenille, or escapement samples)

Projects using PBT baseline

- Stock Composition of:
- Columbia River Fisheries (Alan Byrne, IDFG)
- Idaho Fisheries (Brian Leth, IDFG)
- Escapement at Lower Granite Dam (Brian Leth, IDFG)
- Origin of Hatchery Kelts (Andrew Matala, CRITFC)
- Origin of Hatchery Strays (Matt Smith, usfws)
- Origin of Bird-predated Smolts (David Kuligowski, nOAA)

And, finally...multi-generational data

- Heritability of traits: SY2013 Assigned back to SY2009 (2-ocean)

Heritability of Spawn Timing

VERY heritable $\left(\mathrm{h}^{2}=0.76\right)$

Review:

GSI (Genetic Stock Identification)

- Works well with highly differentiated populations
- Reference populations are sampled to create a baseline
- Used primarily to determine origin of wild fish

PBT (Parentage Based Tagging)

- Uses parentage assignments to determine origin
- Broodstock are sampled annually to create a baseline
- Used primarily to determine origin of hatchery fish

Questions?

[^0]: * Assuming 3,500 smolts produced per broodstock pair

