Using genomics to study segregated hatchery
effects in western Washington steelhead
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Overview

 We are using genomic methods to identify
and track hatchery effects in Lower Columbia
River steelhead.

* Improve estimates of pHOS — specifically from
segregated early winter (Chambers Creek
strain)

* Discover genetic markers of domestication to
improve detection of introgression



Approach

High-resolution marker discovery
Develop genetic linkage maps

Select uniformly distributed markers for
scanning population samples

Look for genomic signhatures of selection
during development of the segregated strains



Genomics 111 — key concepts

* Genomic studies incorporate information about patterns of
genetic variation across a genome. Requires a map.

Population Genomics of Parallel Adaptation in
Threespine Stickleback using Sequenced RAD Tags ,

Paul A. Hohenlohe'”, Susan Bassham'”, Paul D. Etter®, Nicholas Stiffler®, Eric A. Johnson®, William A.
Cresko'*
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Figure 4. Genome-wide patterns of nucleotide diversity. Each plot shows a smoothed distribution of the statistical measure across the
genome (black lines). Colored bars above and below the distributions indicate regions of significantly elevated (p==10"7, blue; p=10_7, red) and
reduced (p=10""°, green) values, assessed by bootstrap resampling. Vertical shading indicates the 21 linkage groups and the unassembled scaffolds
greater than 1 Mb in length, and gold shading indicates two regions showing evidence of balancing selection as discussed in the text. (A) Nucleotide
diversity () across all five stickleback populations sampled. (B) Heterozygosity (H) across all five populations.
doi:10.1371/journal.pgen.1000862.g004



Genomics 111 — key concepts

Crossovers during meiosis reveal the relative

locations of genes and distances between them
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Genomics 111 — key concepts

* Genetic linkage mapping uses the frequencies of crossovers to
estimate the ordering of genes and the distances between
them.
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Meiotic maps of sockeye salmon derived from
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Genomics 111 — key concepts

e Structural chromosomal differences between lineages within
species can serve as persistent tags that identify the lineages

Brenna-Hansen et al. BMC Genomics 2012, 13:432
http//www.biomedcentral.com/1471-2164/13/432
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Genomics 111 — key concepts

Positive selection skews the distribution of reproductive
success within a population and leaves genomic “footprints”
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Screen for Footprints of Selection during Domestication/Captive
Breeding of Atlantic Salmon
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Why use genomics to study hatchery effects?

* Several long-term studies have implicated inter-breeding between
hatchery- and wild-origin steelhead in the declining abundance of wild
populations but specific causal genetic changes remain elusive.
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Why use genomics to study hatchery effects?

Several long-term studies have implicated inter-breeding between
hatchery- and wild-origin steelhead in the declining abundance of wild
populations but specific causal genetic changes remain elusive.
Current management emphasizes natural production and requires
robust tools to monitor the interactions between hatchery- and
natural-origin populations.

Recent advances in DNA sequencing technology have made collection
of genome-wide data on genetic variation practical.

A large body of evolutionary theory provides the bases for detecting
characteristic patterns of selection in genome-wide data sets.
Knowing when selection occurred might allow us to calibrate models of
recent adaptive evolution that could be used in other situations.



Two distinct chromosomal lineages exist in
western Washington steelhead

Copeia, 1983(3), pp. 650-662

Chromosomal Differences Among Rainbow Trout Populations

GarRY H. THORGAARD

Chromosome numbers varied from 58 to 64 among rainbow trout sampled
from 29 locations ranging from Alaska to California. The differences were as-
sociated with centric fusions or fissions; the chromosome arm number was con-
stant at 104 while the chromosome number varied. A 58 chromosome karyotype
similar to that found in the golden and redband trout was the most commonly
observed karyotype over the species range. The similar karyotypes in the rain-

Copeia, 1999(2), pp. 287-298

Geographic Distribution of Chromosome and Microsatellite DNA
Polymorphisms in Oncorhynchus mykiss Native to Western Washington

CARL O. OSTBERG AND GARY H. THORGAARD

Chromosome studies of native populations of Oncorhynchus mykiss (steelhead and
rainbow trout) in western Washington and southern British Columbia revealed the
presence of two evolutionarily distinct chromosome lineages. Populations between,
and including, the Elwha River, Washington, and Chilliwack River, British Columbia,
contained 2n = 60 chromosomes. Populations on the central Washington coast con-
tained 2n = 58 chromosomes. The north Washington coast and western Strait of



Distribution of steelhead chromosomal lineages
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Segregated steelhead hatchery lines in western
Washington were bred for aquaculture

Selection criteria:

1) Early spawners

2) Adult returns from
yearling releases

South Puget Sound early winter:
Program initiated 1945
Adult return time shifted 4 months

L

Lower Columbia River early summer:
Program initiated 1956
Adult return time shifted 2 months

-



Genetic linkage maps

Created gynogenetic haploid mapping families
Enzymatically cut genomic DNA at specific sequence motifs
Attached 6-nucleotide, individual-specific “barcodes”
Sequenced DNA fragments at UO Genomics Core Facility

Screened the raw sequence reads for quality and generated a
catalog of loci and alleles

Assigned haplotypes for each haploid offspring at all observed
loci

Deduced linkage relationships from pair-wise recombination
fractions to generate linkage maps.



Preliminary mapping results

* 5646 markers mapped

* 29 linkage groups in the indigenous Kalama
River families; 30 linkage groups in the out-of-
basin early winter (Chambers Creek strain)



Linkage group W-29 in indigenous Kalama River
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Linkage groups W-29,5 and W-30 in
out-of-basin early winter steelhead
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Still to do ...

Merge our maps with existing ones
ldentify the locations of known genes

Select a subset of loci to use in population
screening

Estimate pHOS in the Kalama River
Look for signs of recent positive selection
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Source of mapping families used in this study

Kalama Falls Hatchery }\



Early winter and early summer hatchery
steelhead strains in western Washington



Distribution of steelhead chromosomal lineages




Note on terminology

Convention on Biological Diversity:
Article 2. Use of Terms

"Domesticated or cultivated species” means species in which the
evolutionary process has been influenced by humans to meet
their needs.



