Use of the Cormack-Jolly-Seber (CJS) Model for Wind River Steelhead Life Cycle Modeling

Dan Rawding, Thomas Buehrens, & Charlie Cochran

OUTLINE

- Goals & Notes
- Hierarchical Models
- Wind River Steelhead Background
- CJS Model, Tagging Sites, Recovery Sites
- Model Selection & GOF Test
- Results
- Management Implications
- Summary

GOALS & NOTES

- Use tag data from Wind River steelhead parr, smolt, and adult PIT tagging to estimate life stage survival and capture probabilities using Cormack-Jolly-Seber (CJS) model
- In CJS model survival (φ)= apparent survival, which is survival in the study area. In this case, if we PIT tagged resident *O. mykiss* parr that do not emigrate as smolts survival estimates are biased low.

Hierarchical Models

- All annual adult PIT tag detection efficiencies at BON come from a common distribution of detection efficiencies and their ordering does not affect the model (exchangeable)
- Individual estimates from hierarchical models borrow strength from other annual detection efficiencies because they are similar; reduces model overfitting; hierarchical models are a compromise between individual and fully pooled estimates.
- Hierarchical parameter estimates have improved precision because they shrink toward the mean; shinkage depends on the variance of the random parameters.
- Borrowing strength is often viewed as being beneficial when data is sparse, as in many tagging studies.

Wind River Steelhead

- Located at RM 153 ~ 11 mile upstream BON
- Wild steelhead sanctuary since 2000
- Escapement (range 200-1500);mean (600+)
- Summer steelhead 95% to 99% of escapement
- Freshwater Age age 2 ~75% & age 3 ~ 25%
- Marine Age- age 1<5%, age 2~85%, age 3<10%
- Annual (2.2s) and Skip Repeat Spawners (2.2s1)
- PIT Tagging
 - smolts since 2003 annual tag range (1100-2500),
 - parr since 2007 tag annual range (300-600), &
 - adults since 2008 annual tag range (30-300)

CJS Model

- This CJS model is life cycle model using tagging, detection, and recapture sites to partition life stage survival.
- Assume all parr tagged in spring emigrate as smolts following year.
- Most fish are PIT tagged at the smolt stage & CJS model tracks smolt outmigration cohorts
- Adults tagged at Shipherd Falls ladder added to appropriate smolt outmigration year based on scale ages.

WIND RIVER STEELHEAD LIFE CYCLE MODEL

2008 CJS Wind River m-array

- Create individual capture histories (0,1) at each site based on PTAGIS query
- Sum individual capture histories to create m-array for analysis

2008	LW_ST	BONsm	TWX/ES	BONma	SFTma	BONk1	TWXk1	BONr1	SFTr1	BONk2	TWXk2	BONr2	Not Seen
UR_ST	1	0	4	3	0	0	0	0	0	0	0	0	299
LW_ST	0	187	145	64	0	0	0	0	0	0	0	0	761
BONsm	0	0	34	15	0	0	0	0	0	0	0	0	138
TWX/ES	0	0	0	3	0	0	0	0	0	0	0	0	24
BONma	0	0	0	0	10	5	1	2	0	0	0	0	67
SFTma	0	0	0	0	0	45	1	17	0	0	0	0	211
BONk1	0	0	0	0	0	0	0	9	0	0	0	0	41
TWXk1	0	0	0	0	0	0	0	0	0	0	0	0	2
BONr1	0	0	0	0	0	0	0	0	4	5	0	3	16
SFTr1	0	0	0	0	0	0	0	0	0	1	0	0	5
BONk2	0	0	0	0	0	0	0	0	0	0	0	0	6
TWXk2	0	0	0	0	0	0	0	0	0	0	0	0	0

Models (Years 2003-11)

- Model 1 survival and capture probabilities are pooled (constant) for each cohort
- Model 2 survival and capture probabilities are independent for each cohort
- Model 3 survival and capture probabilities are for each cohort are hierarchical across years.
- Model 4 survival and capture probabilities are for each cohort are hierarchical across years but same capture probabilities for all adults at BON, SF, and kelts at BON and TWX

Model Selection & Goodness of Fit (GOF) Test

- Deviance Information Criteria (DIC), a Bayesian analog for AIC, was used for model selection (lower values are better fit).
- Bayesian *p*-values compare observed and expected data from the model, which is similar to a χ2 test; difference is perfect fit for Bayesian p-values =0.5, and values near 0 or 1 indicate lack of fit

Model No.	Model	DIC	Bayesian <i>P</i> - value Range	ΔDIC	Comments
	Model 3 plus				
4	Hier. Adult <i>p</i> at BON, SF, &TWX	820.83	0.10 to 0.60	0.00	"Best" Model
3	Hierarchical for p and φ	824.05	0.13 to 0.93	3.22	Some Support
2	Independent	827.24	0.16 to 0.67	6.41	Some Support
1	Pooled	1895.06	0 .00 to 0.00	1074.23	No Support

Smolt Outmigration Year

Smolt Outmigration Year

Wind R. Kelt Surv., Ship.Falls-BON

Wind R. Repeat Surv., BON-Ship.Falls

Wind R. Kelt2 Surv., Ship.Falls-BON

Smolt Outmigration Year

Wind R. Repeat2 Surv., Estuary-BON

CJS Assumptions

- Every marked fish present at sampling period *i* has the same prob. of capture (*p*). Every marked animal present at sampling period *i* has the same prob. of survival (φ) to the next period.
 - Based on omnibus Bayesian GOF test (*P*-values [0.10-0.60]) assumption is met. Similar GOF tests in the program MARK.
- Marks are not lost/overlooked and correctly reported.
 - Short-term tag loss in Wind parr and smolt from double tagging experiments <1%; tagged in dorsal sinus (not expelled during spawning).
 - Knudsen et al. (2009) identified tag loss and mortality (2% juveniles & 18% adults) with PIT tags for hatchery spring Chinook salmon; so our survival estimates are likely biased low until adult stage at BON if Knudsen results are applicable.

CJS Assumptions

- Sampling is instantaneous and all fish are released immediately after capture.
 - Juvenile and kelt sampling is ~2 months but adult sampling at BON and SF is 12 months.
 - Simulations by Hargrove and Borlund (1994) suggests parameters not too sensitive to this assumption.
- The fate of each fish with respect to capture and survival probability is independent of the fate of other fish.
 - If this assumption not met this leads to overdispersion; estimates will be unbiased but variance will be underestimated.

Management Implications

- Approximately 35% of the Wind River steelhead do not survive the 13 miles from BON to SF.
- Wind River PIT tag Z6 fall harvest rate~ 7% in 2010 & 2011
- Harvest rates are unknown in other Z6 fisheries and recreational wild release fisheries.
- Over 25% of the adult wild steelhead passing BON are unaccounted for

Management Implications

Wind River Parr-Smolt Survival

- Apparent survival for parr to smolt is ~ 10% for primary rearing area between upper and lower traps.
- No parr tagging from 2003 to 2007, so the estimate is the hierarchical estimate.
- Density dependence & parr residualization may contribute to the low survival for this life stage.

Management Implications

- Approximately 17% (range 5% to 30%) of the kelts are detected at BON; most are detected in the corner collector or ice and trash sluiceway.
- Approximately 20% of the kelts (range 5% to 25%) survive from entry into the estuary as kelts to returning adults (repeats) at BON.

Summary

- CJS model is typically applied to in the Columbia River to estimate juvenile reach survival but can be used to estimate survival/mortality by life stage for anadromous fish.
- This approach allows an estimate of survival by life stages/migration periods to identify limiting stages.
- Poor precision on double repeat spawner survival and capture estimates due to few tags and low detection probabilities for kelts.
- When few tags are releases or when detection rates are low, hierarchical models can improved the precision of estimates given the assumption of exhangability.
- Model selection and GOF tests support the use of hierarchical models for Wind River CJS life cycle model.

Acknowledgements

- Steve VanderPloeg (WDFW) map.
- Bryce Glaser (WDFW) project management.
- Rich Zabel (NOAA) Sand Island and Estuary Trawl photos.
- Mary Todd Haight (BPA) for support of Wind River Steelhead monitoring project.
- Various WDFW, USFS, and USGS technicians for adult and juvenile data collection and PIT tagging.