Estimating the proportion of steelhead and rainbow trout using sex ratios

Haley Ohms

Measuring Proportion of Steelhead and Residents is Challenging

- Need to know both
- Juveniles identical
- Smolts captured in one place, residents not

Sex Ratios

 Still need to sample watershed

But,

- Requires fewer individuals
- Population numbers not scaled twice
- Less effort each site

Conceptual Model

Steelhead offspring

Resident offspring

Resident offspring

<u>(ر او</u>

•

0

Smolts 67% Female

Resident offspring

Residents 67% Male

Swamping Hypothesis Steelhead offspring Resident offspring

Smolts 67% Female

Residents 52% Male

0

Resident offspring

Smolts 67% Female

•

Kesidents 52% Male

•

I. Sex ratio of smolts (S_S)

I. Sex ratio of smolts (S_S) 2. Sex ratio of residents (S_R)

- Sex ratio of smolts (S_S)
 Sex ratio of residents (S_R)
 Proportion of steelboad (P
- 3. Proportion of steelhead (P_s)

- I. Sex ratio of smolts (S_S)
- 2. Sex ratio of residents (S_R)
- 3. Proportion of steelhead (P_S)
- 4. Assume starting sex ratio 1:1, equal mortality

The equation

Steelhead $\mathcal{J} + \text{Res.} \mathcal{J} = \text{Steelhead } \mathcal{Q} + \text{Res.} \mathcal{Q}$

The equation

Steelhead 3 + Res. = Steelhead + Res. $(1 - S_S)P_S + S_R(1 - P_S)$

The equation

Solve for Proportion Steelhead (P_S)

$P_{S} = (S_{R} - 0.5) / (S_{R} + S_{S} - 1)$

Proportion Steelhead

SF John Day Example

- Smolt Sex Ratio $(S_S) = 0.76$
- Resident Sex Ratio $(S_R) = 0.58$
- Proportion Steelhead (P_S) = 0.235

Mann Creek

Holecek and Scarnecchia (2013)

- Adfluvial Sex Ratio $(S_S) = 0.74$
- Resident Sex Ratio $(S_R) = 0.81$
- Proportion Adfluvial $(P_S) = 0.44$

Big Creek

- Rundio et al 2012
- 83% Residents male, no smolt sex ratio

Assumptions and Challenges

- Equal mortality
- One cohort, transitions happen in same year
- Still have to measure sex ratio in residents

Still to do

- Confidence bounds
- How big of a sample do you need?
- How sensitive to proportions near 0.5
- We need more data!

Conclusions

- Sex ratios can be used together to estimate proportion of steelhead
- Sex ratios of residents can **not** be inferred from sex ratio of steelhead without knowing proportion of steelhead
- Could be a very useful tool

Thanks

- Chris Jordan (NOAA)
- Dave Lytle (OSU)
- Gordie Reeves (USFS)

- Ohms et al. 2013. CJFAS
- haley.ohms <at> oregonstate.edu

Oregon State