Estimating the proportion of steelhead and rainbow trout using sex ratios

Haley Ohms

Measuring Proportion of Steelhead and Residents is Challenging

- Need to know both
- Juveniles identical
- Smolts captured in one place, residents not

Sex Ratios

- Still need to sample watershed

But,

- Requires fewer individuals
- Population numbers not scaled twice
- Less effort each site

Conceptual Model

Steelhead offspring

Resident offspring

Steelhead offspring

Resident offspring

\downarrow

Steelhead offspring

Steelhead offspring

Smolts
67\% Female

Resident offspring

Residents 67\% Male

Swamping Hypothesis

Steelhead offspring

Resident offspring

Residents
52\% Male

Steelhead offspring

Smolts
67\% Female

Resident offspring

I. Sex ratio of smolts $\left(\mathrm{S}_{\mathrm{S}}\right)$

I. Sex ratio of smolts (S_{S})
2. Sex ratio of residents (S_{R})

I. Sex ratio of smolts (S_{S})
2. Sex ratio of residents $\left(\mathrm{S}_{\mathrm{R}}\right)$
3. Proportion of steelhead (\mathbf{P}_{S})

I. Sex ratio of smolts $\left(\mathrm{S}_{\mathrm{S}}\right)$
2. Sex ratio of residents $\left(S_{R}\right)$
3. Proportion of steelhead (P_{S})
4. Assume starting sex ratio 1:1,
equal mortality

The equation

Steelhead $\widehat{\gamma}+$ Res. $\widehat{\gamma}=$ Steelhead $q+$ Res. q

The equation

Steelhead $\delta^{\lambda}+$ Res. $\delta^{\lambda}=$ Steelhead $q+$ Res. q

$$
\left(1-S_{S}\right) P_{S}+S_{R}\left(1-P_{S}\right)
$$

The equation

Steelhead $\delta^{\lambda}+$ Res. $\sigma^{\lambda}=$ Steelhead $q+$ Res. q

$$
\left(1-\mathrm{S}_{\mathrm{S}}\right) \mathrm{P}_{\mathrm{S}}+\mathrm{S}_{\mathrm{R}}\left(1-\mathrm{P}_{\mathrm{S}}\right)=\mathrm{S}_{\mathrm{S}} * \mathrm{P}_{\mathrm{S}}+\left(1-\mathrm{S}_{\mathrm{R}}\right)^{*}\left(1-\mathrm{P}_{\mathrm{S}}\right)
$$

Solve for

Proportion Steelhead (P_{S})

$$
P_{S}=\left(S_{R}-0.5\right) /\left(S_{R}+S_{S}-1\right)
$$

Proportion Steelhead

SF John Day Example

- Smolt Sex Ratio $\left(\mathrm{S}_{\mathrm{S}}\right)=0.76$
- Resident Sex Ratio $\left(\mathrm{S}_{\mathrm{R}}\right)=0.58$
- Proportion Steelhead $\left(\mathrm{P}_{\mathrm{S}}\right)=0.235$

Mann Creek

Holecek and Scarnecchia (20|3)

- Adfluvial Sex Ratio $\left(\mathrm{S}_{\mathrm{S}}\right)=0.74$
- Resident Sex Ratio $\left(\mathrm{S}_{\mathrm{R}}\right)=0.81$
- Proportion Adfluvial $\left(\mathrm{P}_{\mathrm{S}}\right)=0.44$

Big Creek

- Rundio et al 2012
- 83\% Residents male, no smolt sex ratio

Assumptions and Challenges

- Equal mortality
- One cohort, transitions happen in same year
- Still have to measure sex ratio in residents

Still to do

- Confidence bounds
- How big of a sample do you need?
- How sensitive to proportions near 0.5
- We need more data!

Conclusions

- Sex ratios can be used together to estimate proportion of steelhead
- Sex ratios of residents can not be inferred from sex ratio of steelhead without knowing proportion of steelhead
- Could be a very useful tool

Thanks

- Chris Jordan (NOAA)
- Dave Lytle (OSU)
- Gordie Reeves (USFS)
- Ohms et al. 2013. CJFAS
- haley.ohms <at> oregonstate.edu

