Sex biased survival and differences in migration of wild steelhead (*Oncorhynchus mykiss*) smolts from two coastal Oregon Rivers

Neil Thompson, Camille Leblanc, Jeremy Romer, Carl Schreck, Michael Blouin and David Noakes

A smolt is a smolt is a smolt.....right?

Study Objectives

• Sex biased survival during migration?

• If so, what mechanisms may be causing the difference?

Hypotheses

- 1. No difference in survival
 - Based on little phenotypic differentiation

2. Females have higher survival
- Alternative developmental paths/thresholds for anadromy

Rivers studied

- Screw trap
- V7 acoustic tags
- Tissue, length, weight

• Date

• Receiver arrays

• Receiver arrays

• Receiver arrays

• Sex determination

Sex determination
 - OmyY1 marker (Brunelli et al. 2008)

Methods - Logistic Regression

• Alsea model

Survival = fork length + date of tagging + sex + fork length² + (fork length*sex) + (date of tagging*sex)

Methods - Logistic Regression

- Alsea model
- Nehalem model

Survival = date of tagging + sex + (date of tagging*sex)

Methods - Logistic Regression

- Alsea model
- Nehalem model
- Drop in deviance F-test

Sexes different sizes

Nehalem size differences

Nehalem model (males and females separated)

Survival = fork length + fork length²

Survival : Females 40%, Males 18%
– Males 0.329 odds of survival

- Survival : Females 40%, Males 18%
 Males 0.329 odds of survival
- Sex $[Pr(x_1^2 > 3.865) = 0.049]$
- (fork length*sex) [$Pr(x_1^2 > 5.206) = 0.022$]

- Survival : Females 40%, Males 18%
 Males 0.329 odds of survival
- Sex $[Pr(x_1^2 > 3.865) = 0.049]$
- (fork length*sex) [$Pr(x_1^2 > 5.206) = 0.022$]
- No effect of:
 - (date of tagging*sex)
 - Date of tagging

• Survival : Females 62%, Males 66%

- Survival : Females 62%, Males 66%
- Sex [$Pr(x_1^2 > 0.0116) = 0.73$]
- Fork length $[Pr(x_1^2 > 3.75) = 0.053)]$

- Survival : Females 62%, Males 66%
- Sex [$Pr(x_1^2 > 0.0116) = 0.73$]
- Fork length $[Pr(x_1^2 > 3.75) = 0.053)]$
- No effect of:
 - (date of tagging*sex)
 - Date of tagging
 - (fork length*sex)

Results - Nehalem River

- Survival : Females 34%, Males 34%
- Sex [$Pr(x_1^2 > 0.001) = 0.97$]

Results - Nehalem River

- Survival : Females 34%, Males 34%
- Sex [$Pr(x_1^2 > 0.001) = 0.97$]
- No effect of:
 - (date of tagging*sex)
 - Date of tagging

Results - Nehalem River

• Length Analyses

- Females
 - Fork length²
 - $[\Pr(x_1^2 > 4.269) = 0.03]$
- Males
 - No effect

Migration differences - ANOVA

River and estuary migration

Migration differences - ANOVA

- Alsea 2009 model
 - Migration (d) = fork length + sex + (fork length*sex)
- Nehalem 2009
 - Similar to survival analysis

River and estuary migration

Migration Results - Alsea River Segment

- Sex (F=0.57, df=1, p = 0.45)
- Fork length (F=33.9, df=1, p<0.001)
- No effect of:
 (fork length*sex)

Migration Results - Alsea Estuary

- No effect of:
 - (fork length*sex)
 - Sex
 - Fork length

Migration Results - Nehalem River and Estuary

- No effect of:
 - Sex
 - Fork length

Environmental Differences

2009 v. 2010
Major differences in flow

Mechanisms behind survival bias

Small males did not survive (2009)
 Not migration timing or duration
 2010: fish <150 mm not sampled

Mechanisms behind survival bias

- Small males did not survive (2009)
 Not migration timing or duration
 2010: fish <150 mm not sampled
- Physiology?
 - Maturation (Lundqvist et al. 1988)
 - Stress response (Overli et al. 2006)

Mechanisms behind survival bias

- Small males did not survive (2009)
 Not migration timing or duration
 2010: fish <150 mm not sampled
- Physiology?
 - Maturation (Lundqvist et al. 1988)
 - Stress response (Overli et al. 2006)
- Behavior?
 - Anti-predator (Johnson et al. 2001)
 - Nocturnal vs. diurnal migration (Ibbotson et al. 2011)

Acknowledgments

Questions?

Environmental Differences

• Alsea v. Nehalem migration distance

