Sex biased survival and differences in migration of wild steelhead (Oncorhynchus mykiss) smolts from two coastal Oregon Rivers

Neil Thompson, Camille Leblanc, Jeremy Romer, Carl Schreck, Michael Blouin and David Noakes

Oregon State
UNIVERSITY

A smolt is a smolt is a smolt......right?

Study Objectives

- Sex biased survival during migration?
- If so, what mechanisms may be causing the difference?

Hypotheses

1. No difference in survival

- Based on little phenotypic differentiation

2. Females have higher survival

- Alternative developmental paths/thresholds for anadromy

Rivers studied

Methods

- Screw trap
- V7 acoustic tags
- Tissue, length, weight
- Date

Methods

- Receiver arrays

Methods

- Receiver arrays

Methods

- Receiver arrays

Methods

- Sex determination

How to determine the sex of a fish

Methods

- Sex determination
- OmyY1 marker (Brunelli et al. 2008)

Methods - Logistic Regression

- Alsea model

Survival = fork length + date of tagging +
sex +
fork length ${ }^{2}+$
(fork length*sex) +
(date of tagging*sex)

Methods - Logistic Regression

- Alsea model

- Nehalem model

Survival = date of tagging +
sex +
(date of tagging*sex)

Methods - Logistic Regression

- Alsea model

- Nehalem model
- Drop in deviance F-test

Sexes different sizes

Results - Alsea River 2009

- Survival : Females 40\%, Males 18\%
- Males 0.329 odds of survival

Results - Alsea River 2009

- Survival : Females 40\%, Males 18\% - Males 0.329 odds of survival
- Sex $\left[\operatorname{Pr}\left(x^{2}{ }_{1}>3.865\right)=0.049\right]$
- (fork length*sex) $\left[\operatorname{Pr}\left(\mathrm{x}^{2}{ }_{1}>5.206\right)=0.022\right]$

Results - Alsea River 2009

- Survival : Females 40\%, Males 18\%
- Males 0.329 odds of survival
- $\operatorname{Sex}\left[\operatorname{Pr}\left(x^{2}{ }_{1}>3.865\right)=0.049\right]$
- (fork length*sex) $\left[\operatorname{Pr}\left(\mathrm{x}^{2}{ }_{1}>5.206\right)=0.022\right]$
- No effect of:
- (date of tagging*sex)
- Date of tagging

Results - Alsea River 2009

Females

Males

Results - Alsea River 2010

- Survival : Females 62\%, Males 66\%

Results - Alsea River 2010

- Survival : Females 62\%, Males 66\%
- $\operatorname{Sex}\left[\operatorname{Pr}\left(x^{2}{ }_{1}>0.0116\right)=0.73\right]$
- Fork length $\left.\left[\operatorname{Pr}\left(x^{2}{ }_{1}>3.75\right)=0.053\right)\right]$

Results - Alsea River 2010

- Survival : Females 62\%, Males 66\%
- $\operatorname{Sex}\left[\operatorname{Pr}\left(\mathrm{x}^{2}{ }_{1}>0.0116\right)=0.73\right]$
- Fork length $\left.\left[\operatorname{Pr}\left(x^{2}{ }_{1}>3.75\right)=0.053\right)\right]$
- No effect of:
- (date of tagging*sex)
- Date of tagging
- (fork length*sex)

Results - Alsea River 2010

Results - Nehalem River

- Survival : Females 34\%, Males 34\%
- $\operatorname{Sex}\left[\operatorname{Pr}\left(\mathrm{x}^{2}{ }_{1}>0.001\right)=0.97\right]$

Results - Nehalem River

- Survival : Females 34\%, Males 34\%
- $\operatorname{Sex}\left[\operatorname{Pr}\left(x^{2}{ }_{1}>0.001\right)=0.97\right]$
- No effect of:
- (date of tagging*sex)
- Date of tagging

Results - Nehalem River

- Length Analyses
- Females
- Fork length ${ }^{2}$
- $\left[\operatorname{Pr}\left(\mathrm{x}^{2}{ }_{1}>4.269\right)=0.03\right]$
- Males
- No effect

Females

Migration differences - ANOVA

River and estuary migration

Migration differences - ANOVA

- Alsea 2009 model
- Migration (d) = fork length + sex + (fork length*sex)
- Nehalem 2009
- Similar to survival analysis

River and estuary migration

Migration Results - Alsea River Segment

- Sex ($\mathrm{F}=0.57, \mathrm{df}=1, \mathrm{p}=0.45$)
- Fork length ($\mathrm{F}=33.9$, $\mathrm{df}=1, \mathrm{p}<0.001$)
- No effect of:
- (fork length*sex)

Results - Alsea River 2010

Migration Results - Alsea Estuary

- No effect of:
- (fork length*sex)
- Sex
- Fork length

Migration Results - Nehalem River and Estuary

- No effect of:
- Sex
- Fork length

Environmental Differences

- 2009 v. 2010
- Major differences in flow

Mechanisms behind survival bias

- Small males did not survive (2009)
- Not migration timing or duration
- 2010: fish < 150 mm not sampled

Mechanisms behind survival bias

- Small males did not survive (2009)
- Not migration timing or duration
- 2010: fish <150 mm not sampled
- Physiology?
- Maturation (Lundqvist et al. 1988)
- Stress response (Overli et al. 2006)

Mechanisms behind survival bias

- Small males did not survive (2009)
- Not migration timing or duration
- 2010: fish < 150 mm not sampled
- Physiology?
- Maturation (Lundqvist et al. 1988)
- Stress response (Overli et al. 2006)
- Behavior?
- Anti-predator (Johnson et al. 2001)
- Nocturnal vs. diurnal migration (Ibbotson et al. 2011)

Acknowledgments

Questions?

Environmental Differences

- Alsea v. Nehalem migration distance

