

Evaluation of spatial sampling designs for redd surveys

Martin Liermann¹, Dan Rawding², George Pess¹, Bryce Glaser²

¹ Northwest Fisheries Science Center,

² Washington Department of Fish and Wildlife.

Acknowledgements

- Survey teams
- GIS and data support: Steve VanderPloeg
- Funding:

Pacific Coast Salmon Recovery Fund, Pacific Salmon Commission's Letter of Agreement (Chinook Technical Committee) and Southern Boundary Fund, NOAA-Fisheries Mitchell Act, the Washington State General Fund, and the Bonneville Power Administration through the Pacific Northwest Aquatic Partnership.

• Prior theoretical and applied salmon sample design research.

Question

What is the best way to choose a sub sample of reaches?

Question

What is the best way to choose a sub sample of reaches?

Question

What is the best way to choose a sub sample of reaches?

Main points

- Redd locations are geographically clumpy
- This produces much more variable estimates (from sample to sample).
- There are effective strategies for reducing this variability.
 - Spatially balanced designs
 - Stratified designs
 - Regression estimators

Main points

- Redd locations are geographically clumpy
- This produces much more variable estimates (from sample to sample).
- There are effective strategies for reducing this variability.
 - Spatially balanced designs
 - Stratified designs
 - Regression estimators

Main points

- Redd locations are geographically clumpy
- This produces much more variable estimates (from sample to sample).
- There are effective strategies for reducing this variability.
 - Spatially balanced designs
 - Stratified designs
 - Regression estimators

Approach

- Bin redds into 1km reaches.
- Select a sample from the reaches based on a design (SRS, GRTS, stratified).
- Repeat many times for each sampling design.
- Summarize results.

Germany, Abernathy, and Mill, Steelhead 2007

MAG popultion

River Km

MAG population

River Km

Approach

- Bin redds into 1km reaches.
- Select a random sample from the reaches.
- Repeat many times for each sampling design.
- Summarize results.

Approach

- Bin redds into 1km reaches.
- Select a random sample from the reaches.
- Repeat many times for each sampling design.
- Summarize results.

Estimated total redds = 310

Estimated total redds = 420

Estimated total redds = 240

Approach

- Bin redds into 1km reaches.
- Select a random sample from the reaches.
- Repeat many times for each sampling design.
- Summarize results.

- Simple random sampling (SRS)
- Generalized Random Tesselation Stratified (GRTS)
- Stratified GRTS
- Peak count census + regression estimator

• SRS

• SRS

- SRS
- GRTS (Generalized Random Tesselation Stratified)
- Stratified GRTS
- Peak count census + regression estimator

• SRS

• GRTS (Generalized Random Tesselation Stratified)

- SRS
- **GRTS** (Generalized Random Tesselation Stratified)
- Stratified GRTS
- Peak count census + regression estimator

Stratified GRTS

Stratified GRTS

Sampling approaches

- SRS
- **GRTS** (Generalized Random Tesselation Stratified)
- Stratified GRTS
- Peak count census + regression estimator

Peak count census + regression estimator

Results

Redd distribution

	Mill, Abernathy &		
	Germany Cr	Coweeman River	East Fork Lewis River
Variance / mean	10.23	9.30	7.70

Redd distribution

	Mill, Abernathy &		
	Germany Cr	Coweeman River	East Fork Lewis River
Variance / mean	10.23	9.30	7.70
AutoCorr	0.55	0.32	0.03
'			'

Peak count census + regression estimator

Redd distribution

	Mill, Abernathy &		
	Germany Cr	Coweeman River	East Fork Lewis River
Variance / mean	10.23	9.30	7.70
AutoCorr	0.55	0.32	0.03
r r	0.90	0.96	0.94
$\sqrt{1-r^2}$	0.40	0.29	0.35

Conclusions

- Redd locations are geographically clumpy
- This produces much more variable estimates (from sample to sample).
- There are effective strategies for reducing this variability (GRTS, stratified, regression).

Implications

- Great data set that is likely representative of many other systems.
- Spatially balanced GRTS is a no-brainer.
- Stratified design effectiveness depends on the strata.
- Regression estimator depends on the auxiliary variable. Peak count census works well.

Further work

- Panel designs, etc...
- Other aux. vars. for regression estimators
- Redds to spawners expansion.

Steelhead redd distribution (IMW complex)

Sampling approaches

- SRS
- GRTS (Generalized Random Tesselation Stratified)
- Stratified GRTS

Sampling approaches

- SRS
- **GRTS** (Generalized Random Tesselation Stratified)
- Stratified GRTS
- Peak count census + regression estimator

Describe spatial distribution