Evaluation of spatial sampling designs for redd surveys

Martin Liermann¹, Dan Rawding², George Pess¹, Bryce Glaser²

¹ Northwest Fisheries Science Center,
² Washington Department of Fish and Wildlife.
Acknowledgements

• Survey teams
• GIS and data support: Steve VanderPloeg
• Funding:
 Pacific Coast Salmon Recovery Fund, Pacific Salmon Commission’s Letter of Agreement (Chinook Technical Committee) and Southern Boundary Fund, NOAA-Fisheries Mitchell Act, the Washington State General Fund, and the Bonneville Power Administration through the Pacific Northwest Aquatic Partnership.
• Prior theoretical and applied salmon sample design research.
Question

What is the best way to choose a sub sample of reaches?
Question

What is the best way to choose a sub sample of reaches?
Question

What is the best way to choose a sub sample of reaches?
Main points

• Redd locations are geographically clumpy
• This produces much more variable estimates (from sample to sample).
• There are effective strategies for reducing this variability.
 – Spatially balanced designs
 – Stratified designs
 – Regression estimators
Main points

• Redd locations are geographically clumpy
• This produces much more variable estimates (from sample to sample).
• There are effective strategies for reducing this variability.
 – Spatially balanced designs
 – Stratified designs
 – Regression estimators
Main points

• Redd locations are geographically clumpy
• This produces much more variable estimates (from sample to sample).
• There are effective strategies for reducing this variability.
 – Spatially balanced designs
 – Stratified designs
 – Regression estimators
Approach

• Bin redds into 1km reaches.
 • Select a sample from the reaches based on a design (SRS, GRTS, stratified).
 • Repeat many times for each sampling design.
 • Summarize results.
Germany, Abernathy, and Mill, Steelhead 2007
Approach

• Bin redds into 1km reaches.

• Select a random sample from the reaches.

• Repeat many times for each sampling design.

• Summarize results.
Approach

• Bin redds into 1km reaches.
• Select a random sample from the reaches.
• Repeat many times for each sampling design.
• Summarize results.
Estimated total reds = 310
Estimated total reds = 420
Estimated total reds = 240
Approach

• Bin redds into 1km reaches.
• Select a random sample from the reaches.
• Repeat many times for each sampling design.
• Summarize results.
Sampling approaches

• Simple random sampling (SRS)
• Generalized Random Tessellation Stratified (GRTS)
• Stratified GRTS
• Peak count census + regression estimator
Sampling approaches

- SRS

![Graph showing reds distributions across different locations](image-url)
Sampling approaches

- SRS

![Redd distribution graphs for Abernathy, Germany, Mill, and Other locations along a river (River Km) with Redds on the y-axis.](image)
Sampling approaches

- SRS
- GRTS (Generalized Random Tessellation Stratified)
- Stratified GRTS
- Peak count census + regression estimator
Sampling approaches

- **SRS**
- **GRTS (Generalized Random Tessellation Stratified)**

![Bar chart showing Redds distribution across different locations and river kilometers.](chart.png)
Sampling approaches

• SRS
• GRTS (Generalized Random Tesselation Stratified)
• Stratified GRTS
• Peak count census + regression estimator
Stratified GRTS

River Km

Redds

0 10 20 30 40 50

0 5 10 15

Abernathy

Germany

Mill

Other

Redds

0 5 10 15

0 5 10 15 20

River Km

0 5 10 15 20
Stratified GRTS

River Km

Redds

Abernathy

Germany

Mill

Other

River Km
Stratified GRTS

- Abernathy
- Germany
- Mill
- Other

![Graph showing stratified GRTS](image-url)
Stratified GRTS

River Km
Redds
0 10 20 30 40 50
0 5 10 15
Abernathy
0 5 10 15
Germany
0 5 10 15
Mill
0 5 10 15 20
Other
Stratified GRTS

Abernathy
Germany
Mill
Other

River Km

Redds

0 5 10 15

20
Stratified GRTS

River Km

Redds

Abernathy

Germany

Mill

Other

Stratified GRTS

River Km

Redds

Abernathy

Germany

Mill

Other

Stratified GRTS

River Km

Redds

Abernathy

Germany

Mill

Other

Stratified GRTS

River Km

Redds

Abernathy

Germany

Mill

Other

Stratified GRTS

River Km

Redds

Abernathy

Germany

Mill

Other

Stratified GRTS

River Km
Sampling approaches

- SRS
- GRTS (Generalized Random Tesselation Stratified)
- Stratified GRTS
- Peak count census + regression estimator
Peak count census + regression estimator
Results
Abernathy

Germany

Mill

Other
Abernathy
Germany
Mill
Other

Redds

River Km

[Graph showing bar charts for Abernathy, Germany, Mill, and Other. Abernathy has a significantly higher peak than the others.]
Redd distribution

<table>
<thead>
<tr>
<th>Variance / mean</th>
<th>Mill, Abernathy & Germany Cr</th>
<th>Coweeman River</th>
<th>East Fork Lewis River</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.23</td>
<td>9.30</td>
<td>7.70</td>
</tr>
</tbody>
</table>
Redd distribution

<table>
<thead>
<tr>
<th></th>
<th>Mill, Abernathy & Germany Cr</th>
<th>Coweeman River</th>
<th>East Fork Lewis River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance / mean</td>
<td>10.23</td>
<td>9.30</td>
<td>7.70</td>
</tr>
<tr>
<td>AutoCorr</td>
<td>0.55</td>
<td>0.32</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Peak count census + regression estimator
Redd distribution

<table>
<thead>
<tr>
<th></th>
<th>Mill, Abernathy & Germany Cr</th>
<th>Coweeman River</th>
<th>East Fork Lewis River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance / mean</td>
<td>10.23</td>
<td>9.30</td>
<td>7.70</td>
</tr>
<tr>
<td>AutoCorr</td>
<td>0.55</td>
<td>0.32</td>
<td>0.03</td>
</tr>
<tr>
<td>r</td>
<td>0.90</td>
<td>0.96</td>
<td>0.94</td>
</tr>
<tr>
<td>$\sqrt{1 - r^2}$</td>
<td>0.40</td>
<td>0.29</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Conclusions

• Redd locations are geographically clumpy
• This produces much more variable estimates (from sample to sample).
• There are effective strategies for reducing this variability (GRTS, stratified, regression).
Implications

• Great data set that is likely representative of many other systems.
• Spatially balanced GRTS is a no-brainer.
• Stratified design effectiveness depends on the strata.
• Regression estimator depends on the auxiliary variable. Peak count census works well.
Further work

• Panel designs, etc...
• Other aux. vars. for regression estimators
• Redds to spawners expansion.
Steelhead redd distribution (IMW complex)
Sampling approaches

- SRS
- GRTS (Generalized Random Tessellation Stratified)
- Stratified GRTS
Sampling approaches

• SRS
• GRTS (Generalized Random Tessellation Stratified)
• Stratified GRTS
• Peak count census + regression estimator
Describe spatial distribution