# **Smith River Verification Study**

# Comparing snorkeling and electrofishing for large spatial scale juvenile salmonid monitoring

Ron Constable and Erik Suring, ODFW Corvallis Research Lab, Corvallis, OR.

- Purpose: on large scales which method is better for monitoring of juvenile salmonid trends
- Optimal
  - Detect fish for distribution
  - Survey large and consistent portion of the population for abundance
  - Precision
  - Cost

#### • Accuracy and Shallow Water v. Sample Size and Big Water

#### **Location and Scale**



Wadeable (304 km)

- lower order
- ACW < 10m

Intermediate (24 km)

- 3<sup>rd</sup> order
- ACW 9-12m

Non-wadeable (90 km) - 3<sup>rd</sup> order or higher - ACW > 12m

## **Methods** Electrofishing

- GRTS (Stevens, 2002) based
- 36 sites per year in wadeable streams
- Electrofishing: removal estimates (Armour, 1983) with block nets on a habitat unit by habitat unit basis
- 20x ACW and encompass GRTS point



## Methods Snorkeling



- 1000 m reach, same GRTS points encompassed
- Only pools > 40cm deep and 6 m<sup>2</sup> in surface area
- Single pass, enumerate salmonids
- Additional sites in Nonwadable streams
- Resurveys

## Methods Clarifications

 Only Steelhead > 90mm in fork length

- Six seasons
  - 2001 to 2004
  - 2007 and 2008

![](_page_4_Picture_5.jpeg)

## Methods Metrics

#### • Distribution

– Site Occupancy = n of sites with steelhead/n of sites sampled

#### Abundance

- Population Estimates = Fish per meter x Site weight
  - Fish/Meter = sum of count or removal estimate/survey length
  - Site weight = total length of each stream type/number of site completed in type

#### Variance

- From Stevens statistical analysis (2002)
- Significance
  - p-value < 0.05</p>
- Cost
  - Crew hours = time x crew size

# Methods Metrics

#### Snorkeling

- Only in pools
- Filtered for Wadeable and Non-Wadeable streams

![](_page_6_Picture_4.jpeg)

![](_page_6_Picture_5.jpeg)

#### Electrofishing

- Only in wadeable streams
- Filtered for estimates in all habitat types

## Results Accuracy

- Snorkel counts average 43% of removal estimates
- Visual counts and removal estimates for steelhead.
  - Hillman et al. (1992)
  - Johnson (unpublished data)
  - Mullner et al. (2005)

![](_page_7_Picture_6.jpeg)

## **Results** Sample effort – Sample size

![](_page_8_Figure_1.jpeg)

- Snorkeling required 75% of the Electrofishing effort
- Snorkeling completed and average of 11 additional sites per season
- 11,900m of stream v.
  2171m of stream
- Snorkeling sampled 2.9% of the distribution; Electrofishing sampled 0.5%

#### **Results** Distribution Estimates

![](_page_9_Figure_1.jpeg)

- Snorkeling averages 29% higher than electrofishing
- Smaller confidence intervals increase sensitivity to trends
- CI from snorkeling = 32% of estimate
- CI for Efishing = 55% of estimate

#### **Results** Abundance

- Precision sensitivity
- Non wadeable v. shallow
- Trends Variation

![](_page_10_Picture_4.jpeg)

## Results Precision

- Precision
  - Snorkeling 35 –
    71%, Ave 55%
  - Electrofishing 64 –96%, Ave 83%
- Snorkeling more precise

![](_page_11_Figure_5.jpeg)

## **Results** Abundance

- Most in snorkel pools – ave. 69%
- More steelhead in habitats not snorkeled
- More variation in habitats not electrofished.

![](_page_12_Figure_4.jpeg)

## **Results** Abundance

#### • Faulty Trends

- 66% in non-wadeable (2004)
- 3% non-wadeable (2008)
- 51% in habitats not snorkeled
   (2008)
- Need to expand sampling

![](_page_13_Figure_6.jpeg)

# **Protocol Changes**

![](_page_14_Figure_1.jpeg)

- Need for non wadeable sampling stressed by Tenmile Study (Johnson, 2005)
- 63 77% of steelhead in non wadeable portions

![](_page_14_Picture_4.jpeg)

# **Protocol Changes**

![](_page_15_Figure_1.jpeg)

# **Protocol Changes**

- Lower depth applied to coast wide surveys in 2010:
  - Increase pop est by 8%
  - 7% smaller CIs
  - Increases occupancy;
     decreases occupancy
     CI

![](_page_16_Figure_5.jpeg)

# Conclusions

- Electrofishing more accurate
- Snorkeling less costly, Samples 5x more habitat
- Snorkeling more accurate and sensitive to trends in distribution

![](_page_17_Picture_4.jpeg)

## Conclusions

- Snorkeling more sensitive to trends
- Need to sample in non- wadeable
- Use lower pool depth criteria

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

# Questions

![](_page_19_Picture_1.jpeg)

#### **Results** Distribution Estimates

![](_page_21_Picture_1.jpeg)