

NOAA FISHERIES

Northwest Fisheries Science Center Factors affecting the marine survival of Puget Sound steelhead

Barry Berejikian and Megan Moore Environmental and Fisheries Sciences Division Manchester Research Station

And

Salish Sea Marine Survival Steelhead Workgroup

Puget Sound Steelhead

- Predominantly winter-run populations (late fall spring)
- Roughly 1.5 M hatchery-reared fish released annually
- ESA-listed 'Threatened' in 2007
- Factors in listing decision
 - Declines in abundance and productivity
 - Habitat (dams, urbanization, water quality)
 - Artificial propagation

Abundance of Puget Sound and WA coast populations

Abundance trends

NOAA FISHERIES

Marine (smolt-to-adult) survival

Source: Puget Sound Steelhead Marine Survival Draft Workplan

Where does this lead us?....

- Abundance and SAR trends point to:
 - Strong marine signal
 - > Different signal within Puget Sound than elsewhere (lower survival), particularly since early1990's
 - Possibly worse conditions in southern Puget Sound
- What is different about Puget Sound that might reduce marine survival relative to other regions?
 - > Puget Sound freshwater stream effects on smolt characteristics
 - Migration routes in the Pacific Ocean
 - Puget Sound marine conditions

Acoustic telemetry

Puget Sound Telemetry 'Study'

Hood Canal Rivers: 2006-2010 Moore, Berejikian, et al. (NWFSC)

Green River: 2006-2009 Fred Goetz, Tom Quinn et al (UW, ACOE)

Puyallup River: 2006, 2008-2009 Andrew Berger et al. (Puyallup Tribe)

Nisqually River: 2006-2009 Sayre Hodgson et al. (Nisqually Tribe)

Skagit River: 2006-2009 Ed Conner et al. (Seattle City Light)

Mark-Recapture Survival Estimates: Cormack-Jolly-Seber

	N ₂	006	N ₂	007	N ₂	008	N ₂₀₀₉		
Population	w	н	w	н	w	н	w	н	
Hood canal	73	33	123	47	67	42	105	59	
Green	100	50	39	50	48	50	50	-	
Nisqually	55	-	49	-	14	-	69	-	
Puyallup	25	25	-	-	-	90	-	66	
Skagit	23	-	47	-	50	50	25	55	
TOTAL (N = 1,393)	3	34	3	55	4	11	293		

Categorical variables

Population Region (HC, SS, Skagit) Rear type (H/W) Migration Segment Year Tag Type Continuous variables Distance travelled Body Length

Model with lowest AICc = ~(Segment x population)+ (year)+ (rear type H/W)

Survival of steelhead smolts from river mouths to the ocean

Combined early marine survival estimate = 17% (hatchery = 12%, wild = 20%) Assumes 68% detection rate at Pillar Point....and a bunch of other things

Moore et al. 2010, 2012, in prep, Goetz et al. in press

Potential factors affecting marine survival (why do so many steelhead die so quickly)

- Freshwater influences
 - > Reduced diversity ('Portfolio effect': e.g., Schindler et al. 2012. Nature)
 - > Hatcheries (genetic or ecological)
 - > Water quality (toxic contaminants)
 - Disease-causing pathogens (nanophyetus)
- Changes in the Puget Sound ecosystem that have influenced predator-prey dynamics
 - Avian predators: cormorants, Caspian terns, common mergansers, and loons
 - > Mammalian predators: harbor seals, harbor porpoise
 - ➢ Fish predators: Meh...

Predator-prey interactions (harbor seals)

Jeffries et al. 2003 J. Wildlife Manage.

Predator-prey interactions (harbor porpoise)

(J. Evenson, WDFW, 2013, unpublished data)

NOAA FISHERIES

Herring biomass

Figure 5. Estimated herring spawning biomass, 1973-2011.

Pacific cod abundance

Temperature in Puget Sound (Strait of Juan de Fuca)

Sea Surface Temperature

Snover, A. K., P. W. Mote, L. Whitely Binder, A.F. Hamlet, and N. J. Mantua. 2005. Uncertain Future: Climate Chaffge and its Effects on Puget Sound. A report for the Puget Sound Action Team by the Climate Impacts Group.

- Low early marine survival rates are consistent with low SAR for Puget Sound steelhead?
- Some indications that southern Puget Sound populations impacted more than northern populations
- Puget Sound is warming and has undergone a major ecosystem shift concomitant with the declines in steelhead abundance and SAR.

Telemetry Summary

- > Low early marine survival rates consistent with SARs and abundance of Puget Sound steelhead
- Instantaneous daily mortality rates are high (i.e., mortality occurs very quickly)
- > Rapid travel times (1 3 weeks from river mouths to ocean entry)
- Hood Canal and Puget Sound steelhead exhibit different patterns
- Central Puget Sound may represent a mortality hotspot

Limitations/considerations for acoustic telemetry

- Handling and tag effects never fully known (some negative effects on growth)
- Tag loss in seawater 2% (V7) 12% (V9), but not until after outmigration
- Seals can hear them (Cunningham et al. in review)
- Detection range of receivers varies depending on currents, noise, water quality etc.
- Expected to under-estimate natural survival rates

Telemetry array

Steelhead in the marine environment

• Pacific Ocean migratory patterns and distribution

• Puget Sound migratory behavior and survival

Source: Welch et al. PNAS 108: 8708-8713

NOAA FISHERIES

Can we identify mortality 'hot spots'?

OAA FISHERIES

DP

Travel rates

NOAA FISHERIES

Comparing Puget Sound to Hood Canal

Survival Probability

2013-2015 Steelhead Marine Survival Study

Activities		September	October	November	December	2014	January	February	March	April	May	June	July	August	September	October	November	December	2015	January	February	March	April	May	June
Permitting							-																		
Upgrade telemetry receivers																									
Studies																									
1: Complete retro telemetry data analysis																									
2: Complete SAR trend analysis																									
3: Fish characteristics vs. SARs																									
4. Enviro. data vs. SARs & telemetry																									
5: Predator review																									
6: Genome-wide association study																									
7: Juvenile fish health assessment																									
8: Reciprocal transplant																									
9. Harbor seal interactions																									
10: Dinner bell effect																									
11: Modeling (affiliated)																									

Research Work Plan: Marine Survival of Puget Sound Steelhead

(FINAL - 19JANUARY 2014)

Figure 4. The difference between Puget Sound and Washington Coast marine (smolt-to-adult) survival has increased, one potential indication of increased mortality in Puget Sound (produced by Schmidt, LLTK, using the Kendall et al., WFDW, 2013 unpublished data. See Appendix A for the list of stocks used to create these Figures).

Freshwater: Age-at-smoltification

Source: Hood Canal Steelhead Project

Salish Sea Marine Survival Project (Steelhead Workgroup)

Puget Sound Steelhead Marine Survival Workgroup Participants

- Neala Kendall, WDFW
- Megan Moore, NWFSC
- Barry Berejikian, NWFSC
- Scott Pearson, WDFW
- Ken Warheit, WDFW
- Erik Neatherlin, WDFW
- Chris Ellings, Nisqually Indian Tribe*
- Sandie O'Neill, WDFW
- Mike Crewson, Tulalip Tribes*
- Ed Connor, Seattle City Light

Contributing Experts

- Steve Jeffries, WDFW
- Bruce Stewart, NWIFC
- Paul Hershberger, USGS
- John Kerwin, WDFW
- Dave Beauchamp, UW
- Linda Rhodes, NWFSC
- Lyndal Johnson, NWFSC
- Gina Yitalo, NWFSC
- Penny Swanson, NWFSC
- Brian Beckman, NWFSC
- Andy Goodwin, U.S. Fish and Wildlife Service
- Joy Evered, U.S. Fish and Wildlife Service
- Kym Jacobson, NWFSC
- Mary Arkoosh, NWFSC
- Joe Dietrich, NWFSC

Project Management and Facilitation

- Michael Schmidt, Long Live the Kings
- Iris Kemp, Long Live the Kings

Predator-prey interactions

Identifying potentially important predators on steelhead smolts

Criteria:

- 1. Spatial and temporal overlap,
- 2. Known to eat steelhead
- 3. Known to eat similarly sized salmon or other fish
- 4. Increasing or stable abundance,

Avian predators (S. Pearson, WDFW, review in prep)

cormorants (most abundant)

Caspian terns

common mergansers

loons

rhinoceros auklets (feed on smaller prey)

Mammalian predators Harbor porpoise Harbor seals

TABLE 2. Fish taxa captured by surface trawls at 52 sites in greater Puget Sound during *May–August 2003*; taxa are ranked in order based on highest to lowest frequency of occurrence. (Rice et al. 2012. Marine and Coastal Fisheries 4: 117-128)

<u>SP</u>	ECIES	% frequency
1.	Chinook salmon Oncorhynchus tshawytscha	65.6
2.	Pacific herring Clupea pallasii	57.6
3.	Threespine stickleback Gasterosteus aculeatus	51.5
4.	Surf smelt Hypomesus pretiosus	50.0
5.	Chum salmon <i>O. keta</i>	35.4
6.	River lamprey Lampetra ayresii	25.4
7.	Pacific sand lance Ammodytes hexapterus	22.4
8.	Coho salmon <i>O. kisutch</i>	11.7
9.	Bay pipefish Syngnathus leptorhynchus	11.2
10.	Pacific sandfish Trichodon trichodon	9.0
11.	Starry flounder Platichthys stellatus	8.8
12.	Shiner perch Cymatogaster aggregata	6.1
13.	Steelhead O. mykiss	3.7

**species ranked 14-33 not shown

Freshwater: Spawn timing and size at age

More Acknowledgements.....

Telemetry study funding provided through NOAA, USACE (Seattle District), UW, Steelhead Trout Club of Washington, Pacific Ocean Shelf Tracking Network (POST)

Survival Modeling Support Mike Melnychuk (UW) Jeff Laake (NOAA SWFSC)

Field/Logistic Support

Long Live the Kings • Hood Canal Salmon Enhancement Group • Mat Gillam • R2 Resource Consultants • Bob Leland • Kelly Kiyohara • Pat Michael Brody Antipa • Pete Topping • Deborah Feldman • Kelly Andrews • John Blaine • Jim Deveraux • Skip Tezak Correigh Greene • Anna Kagley • Shawn Larson • Jeff Christiansen • John Rupp • Chuck Ebel • Jose Reyes-Tomassini • Jennifer Scheurell • Chris Ewing Dawn Pucci • Kurt Dobszinsky • Paul Winchell • David Welch • Debbie Goetz • Jose Gimenez • Aswea Porter • Emiliano Perez • Craig Smith • Tim Wilson • Florian Leischner • Christopher Ellings • Scott Steltzner

Telemetry useful for estimating survival (especially relative survival)

• Figure 2. Survival estimates for smolts migrating through fresh- and saltwater migration segments.

Moore M, Berejikian BA, Tezak EP (2012) Variation in the Early Marine Survival and Behavior of Natural and Hatchery-Reared Hood Canal Steelhead. PLoS One 7(11): e49645. doi:10.1371/journal.pone.0049645 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0049645

Comparing Puget Sound to Hood Canal

Quantifying encounter and predation rates

- **Spatial overlap**: seal and steelhead detections on same receivers
- Temporal and spatial overlap: concurrent pings on same fixed (moored) receivers
- Potential encounters: pings detected on mobile (seal-mounted) receivers
- Putative predation events:
 - recurring continuous pings on seal-mounted receivers, perhaps followed by...
 - Stationary tags (defacated tags) connected to seal movements/locations

NOAA FISHERIES

Puget Sound Chinook salmon

- Residency in Puget Sound = weeks to years.
- Very abundant in Puget Sound spring through summer (Beauchamp and Duffy 2011, Rice et al. 2012)
- Spring/summer growth rate and body size strongly correlated with survival (in hatchery stocks: Duffy and Beauchamp 2011)
- Foraging opportunities, diet composition, and competition (including comp. with hatchery Chinook salmon) likely influence survival.

San Francisco Bay

20 fish were released and 6 were detected at the Point Reyes Array. That's 30% survival over 137 km

12 (60%) were detected traveling from the river mouth through San Pablo Bay and through San Francisco Bay (77 Km), 2 went south of the Bay Bridge Array, and 10 that entered the ocean were detected at point reyes. Sundstrom et al 2013

Oregon estuaries, lose about 50% in < 20 km or even shorter distances. Steepest losses in areas where there's been documented high predation rates

Is the estimate 20% EMS high or low?

Species	Year	Release date	Release size (mm)	Duration (weeks)	Detected (Chinook) Survival est (Sthd)	Instantaneous daily mortality				
Chinook (Hatch)	2008	May 9	190-233	~14	43%	M = 0.008				
Sthd (Wild)	2008	April 16 – May 27	170-190	~ 2 ~ 1 ~ 3	89% RM to HCB 18% HCB to JDF 16.5% RM to JDF	M = 0.008 M = 0.242 M = 0.086				

NOAA FISHERIES Moore et al. 2010a. Trans. Am. Fish. Soc.

NOAN

Telemetry useful for identifying hotspots

Moore M, Berejikian BA, Tezak EP (2013) A Floating Bridge Disrupts Seaward Migration and Increases Mortality of Steelhead Smolts in Hood Canal, Washington State. PLoS ONE 8(9): e73427. doi:10.1371/journal.pone.0073427 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0073427

Freshwater: Spawn timing

Freshwater: Smolt migration timing

Source: Hood Canal Steelhead Project

Other freshwater effects

Hatcheries may have both ecological and genetic effects:

Notably, no steelhead released into the Nisqually River since 1980 Water Quality/toxics:

➤Toxic contaminant exposure data for steelhead is lacking

➢Nisqually considered most pristine in main basin of Puget Sound Disease:

- Nanophyetus: more prevalent in south than north Puget Sound
- Rapid infections; can affect swimming performance

