

Using Underwater Video to Estimate Salmon and Steelhead Abundance

Kenneth S. Gates U.S. Fish and Wildlife Service Kenai Fish and Wildlife Field Office Soldotna, Alaska 907-260-0126 kenneth_gates@fws.gov

U.S. Department of the Interior U.S. Fish and Wildlife Service

Recent / Ongoing Underwater Video Projects

- Crooked steelhead and Chinook salmon, AK
- Nikolai Creek steelhead and coho salmon, AK
- Funny River steelhead and Chinook salmon, AK
- Soldotna Creek northern pike and steelhead, AK
- Anchor River Chinook and coho salmon, and steelhead, AK
- Tuluksak River salmon, AK
- Kwethluk River salmon, AK
- Goodnews River salmon, AK
- Silver Salmon Creek coho salmon, AK
- Cooper Creek Dolly Varden, AK
- Shantatalik Creek coho salmon, AK
- Quartz Creek Chinook salmon, AK
- Benjamin Creek Chinook salmon, AK
- Slikok Creek Chinook salmon, AK
- Sulf Lake sockeye salmon, AK
- White Salmon River salmon and steelhead, WA
- Milwaukee River sturgeon re-colonization, WI

Outline

Basic underwater video design

- Examples of video weirs
 - Crooked and Nikolai creek
- Advantages and disadvantages
- Examples of advantages

A Common Underwater Video Design

- Underwater camera
 - Analog
- Digital Video Recorder (DVR)
 - Windows based
 - Stand alone unit
 - Robust motion detection
- Underwater lights
 - 12-V halogen
- Camera box (housing)
 Fish passage chute

Design Options

- Incorporated into a weir
 - Resistance board
 - Picket
- Incorporated into existing infrastructure
 - Hatchery raceways
 - Natural bottlenecks
 - Fish passes

Design Options (cont.)

Power

- 110-V AC shorepower
- 12-V DC remote power
 - Solar, thermoelectric, wind
- Remote or local application
- Wireless video transmission

Design Examples

Design Options

Crooked Creek

- Incorporated into existing infrastructure
- Road accessible
- Water conditions were controllable
- 110-V power supply

Design Options

Nikolai Creek

- Incorporated into a resistance board weir
- Relatively inaccessible
- Microwave system
- 110-V power supply
- No power on site
 - 12-V
- Water conditions uncontrollable

Video Costs

Crooked Creek

- \$9,180
 - Camera box and chute
 - Underwater camera
 - Underwater lights
 - DVR
 - Hard drives, etc.

Nikolai Creek

- \$26,080
 - Camera box and chute
 - Underwater camera
 - Underwater lights
 - DVR
 - Hard drives, etc.
 - Solar arrays (\$2,000)
 - Batteries (\$1,900)
 - Thermoelectric generators (\$8,000)
 - Microwave system (\$5,000)

Underwater Video Advantages

- Substantial long-term cost saving
- Operate more projects with less personnel
- Accurate species identification
- More precise escapement estimates
- Unobstructed fish passage
- Fish counts during high flows and turbid water
- More inclusive biological data
- Reduced fish handling
- Can be operated passively or actively

Underwater Video disadvantages

- Initial cost can be expensive
- Potential exists for losing data
 - Power failure
 - Uncertainty of motion detection
 - Potentially biased low
 - Computer software glitches
- Need some electronic aptitude
- Cannot be applied in all situations

Daily Hours Worked

Accurate Species Identification

Accurate Species Identification

Underwater video

VS.

Accurate Species Identification

Underwater video

Standing at night with a flood light

VS.

Precise Escapement Estimates

Underwater video

Traditional weir counts

Unobstructed Fish Passage

Typiditabuablystirud Kevestheelkheizet pestiagek salmon
Video weir: Funny River Chinook salmon

Fish Counts During High Flows and Turbid Water

More Inclusive Biological Data

Sex Identification

More Inclusive Biological Data

- Sex Identification
- Marked vs.
 Unmarked

More Inclusive Biological Data

- Sex Identification
- Marked vs.
 Unmarked
- Length

Key Summary Points

- Very adaptable and can be incorporated into many existing escapement monitoring projects
- Provides long-term cost savings
- Passive or active operation
- Provides accurate species identification

