15. Offshore Oil and Gas Exploration, Drilling & Transportation:

Oil is extracted from offshore platforms in southern California and large amounts of Alaskan crude oil also enter the region on Alaskan tankers bound for refineries. These nearshore oil and gas related activities have the potential to pollute salmon EFH and harm prey resources. Oil exploration/production areas are vulnerable to an assortment of physical, chemical, and biological disturbances resulting from activities used to locate oil and gas deposits such as high energy seismic surveys to actual physical disruptions from anchors, chains, drilling templates, dredging, pipes, platform legs and the platform jacket. During actual operations, chemical contaminants may also be released into the aquatic environment (NMFS 1997b). Physical alterations in the quality and quantity of local habitats may also occur during the construction and operation of shore-side facilities, tanker terminals, pipelines, and the tankering of oil. These activities may be of concern if they occurred in habitats of special biological importance to salmon stocks or their prey (NPFMC 1997).

Accidents and spills during transport and during oil transfer from ships or pipelines to refineries are the greatest potential threats to salmon EFH. They are likely to affect shallow nearshore areas or sensitive habitats such tidal flats, kelp beds, estuaries, river mouths and streams.

Although oil is toxic to all marine organisms at high concentrations (parts per million), certain species are more sensitive than others. The type, volume, and properties of the spilled oil; environmental variables such as water density, wave height, currents, wind speed, etc.); and the type of response effort, all affect the potential risk to salmon EFH. Oil spills in marine waters probably affect salmon more through their effects on salmon food organisms than on the salmon themselves because juvenile and adult fish generally are able to avoid oil slicks in open seas. However if an oil spill reached nearshore areas with productive nursery grounds, such as an estuary, or if a spill occurred at a location where fish were concentrated a year’s production of smolts could be lost (NPFMC 1997).

Injuries to fish and their prey in the surface slick results from both physical coating by oil as well as to the toxicity of the petroleum hydrocarbons and other compounds in the oil. Many low molecular weight aromatic hydrocarbons are soluble in water, increasing the potential for exposure to aquatic resources. Adult fish tolerate much higher concentrations of petroleum hydrocarbons than eggs and larvae. Sublethal effects of oil typically manifested in adult fish are primarily physiological and affect feeding, migration, reproduction, swimming activity, and schooling behaviors (Kennish 1997, Strickland and Chasan 1993).

Clean-up activities for oil residues on beaches, rocky shorelines or sea surface sometimes involve physical or chemical methods such as high pressure hoses, steam, or dispersants. These activities may be more hazardous to plants and animals than the oil itself and may also adversely affect salmon habitat.

Dispersants are also sometimes used to emulsify oil (i.e., reduce the water-oil interfacial tension) so that it can enter the water column rather than remaining on the surface. While reducing the adverse effects on the shoreline, birds, and marine mammals, the dispersants may be toxic themselves to marine organisms and plants as well as make the oil itself more available for uptake by marine organisms and hence more toxic (Falco 1992).

Degradation byproducts of petroleum hydrocarbons have high acute toxicities to fish. Studies of bivalve tissue from beaches heavily oiled by the Exxon Valdez incident showed that a complex assemblage of intermediate hydrocarbon oxidation byproducts were bioavailable for uptake in marine organisms for several years post-spill. Thus, oxidation byproducts may be an additional source of chronic exposure and effects on fish populations (NOAA 1996).

Conservation Measures -- Offshore Oil &Gas Exploration, Drilling & Transportation:

Below are the types of measures that can be undertaken by the action agency on a site-specific basis to conserve salmon EFH in nearshore and estuarine regions that have the potential to be affected by transportation and onshore support activities associated with oil and gas exploration, drilling and production. Not all of these suggested measures are necessarily applicable to any one project or activity that may adversely affect salmon EFH. More specific or different measures based on the best and most current scientific information may be developed prior to, or during the EFH consultation process, and communicated to the appropriate agency. The options listed below represent a short menu of general types of conservation actions that can contribute to the protection and restoration of properly functioning salmon habitat. The following suggested measures are adapted from Cameron (1998 personal communication), Lollock (1998 personal communication), and Logan (1998 personal communication).

16. Road Building and Maintenance:

Roads may affect groundwater and surface water by intercepting and re-routing water that might otherwise drain to springs and streams. This increases the density of drainage channels within a watershed and results in water being routed more quickly into the streams (NRC 1996, Spence et al. 1996). Altering the connection between surface and groundwater can affect water temperatures, instream flows and nutrient availability. These factors can affect egg development, the timing of fry emergence, fry survival, aquatic diversity and salmon growth (NRC 1996).

In urban areas, extensive road and pavement can effectively double the frequency of hydrologic events that are capable of mobilizing stream substrates (NRC 1996) (also see Construction/Urbanization section). This increased scour of gravel and cobble in areas where salmon eggs, alevins, or fry reside can kill salmon directly or indirectly increase mortality by carrying them downstream and away from stream cover.

Urban roads can be a major source of sediment input during construction as can the installation of bridges, culverts, and diversions with coffer dams. However, these project impacts seem to be more temporary and less pervasive on sediment input than forest roads (Waters 1995).

In small forested watersheds, streamflow appears to be directly related to the total area of the watershed composed of roads and other heavily compacted surfaces. In larger watersheds, where roads and impermeable areas represent a relatively small area of the basin little or no effect is seen (Adams and Ringer 1994). Altered hydrology was noted when roads covered 4% or more of a drainage area (King and Tennyson 1984).

Road culverts can block both adult and juvenile salmon migrations. Blockage can result from the culvert becoming perched above stream bed level, lack of pools that could allow salmon to reach the culvert, or from high water flow velocities in the culvert.

The effect of logging roads on erosion and sedimentation has been well studied. Furniss et al. (1991) concluded that forest roads contribute more sediment than all other forest activities combined on a per unit basis. Road surfaces can break down with repeated heavy wheel loads of hauling trucks, particularly under wet conditions, resulting in a continual source of fine sediment input (Murphy 1995). However, improvements in road-construction and logging methods can reduce erosion rates (NRC 1996). For additional detail, see the "Forestry" section of this document.

Conservation Measures -- Road Building/Maintenance:

Below are the types of measures that can be undertaken by the action agency on a site-specific basis to conserve salmon EFH habitat in areas that have the potential to be affected by road building and maintenance activities. Not all of these suggested measures are necessarily applicable to any one project or activity that may adversely affect salmon EFH. More specific or different measures based on the best and most current scientific information may be developed prior to, or during the EFH consultation process, and communicated to the appropriate agency. The options listed below represent a short menu of general types of conservation actions that can contribute to the protection and restoration of properly functioning salmon habitat. The following suggested measures are adapted from Murphy (1995), Mirati (1998), ODFW (1989), and NMFS (1996b).

17. Sand and Gravel Mining:

Mining of sand and gravel in the region’s watersheds is extensive. Mining occurs by several methods. Sand and gravel extraction from seasonally exposed stream gravel bars occurs through wet-pit mining (i.e., remove material from below the water table) and dry-pit mining on exposed bars and ephemeral streambeds that are excavated by bulldozers, scrapers, and loaders. Bar scalping or skimming operations, which removes the tops of river gravel bars without excavating below the summer water, is one of the most common methods of gravel extraction practiced today. The bars are almost always attached to the stream banks and are frequently located on the inside of bends. Excavation of floodplain and river terrace deposits adjacent to an active or former channel is another common method for gravel extraction. Gravel extraction in these locations may occur to the level of seasonal flow, or may excavate below the level of seasonal flow, and require pumping of seepage water or underwater extraction from a pond. As active channels naturally move, the channel may migrate into the excavated area. The chance of this occurring is increased in the event of a flood.

Extraction of sand and gravel may directly eliminate the amount of gravel available for spawning if the extraction rate exceeds the deposition rate of new gravel in the system. The aerial extent of suitable spawning habitat may be reduced where degradation reduces gravel depth or exposes bedrock (Spence et al. 1996). Sand and gravel mining can suspend materials at the sites, resulting in turbidity plumes which may move several kilometers downstream. Sedimentation may be a delayed effect because gravel removal typically occurs at low flow when the stream has the least capacity to transport the fines out of the system. Mechanical disturbance of spawning beds by mining equipment may also lead to high mortality rates of eggs and alevins. Gravel operations can also interfere with salmon migration past the site if they create physical or thermal changes at the work site or downstream from the site (OWRRI 1995).

Examples of using gravel removal to improve habitat and water quality are limited and isolated (OWRRI 1995). Deep pools created by material removal in streams appears to attract migrating adult salmon for holding. These concentrations of fish may result in high losses as a result of increase predation or recreational fishing pressure. In specific cases, gravel removal can be effectively used to remove stresses on streambanks and streambeds, resulting in greater stabilization and less need for streambank stabilization and greater stability of some spawning beds (OWRRI 1995).

By making the stream channel wider and shallower, the suitability of stream reaches as rearing habitat for juveniles may be decreased, especially during summer low-flow periods when deeper waters are important for survival. Similarly a reduction in pool frequency may adversely affect migrating adults that require holding pools (Spence et al. 1996). Changes in the frequency and extent of bedload movement and increased erosion and turbidity can also remove spawning substrates, scour redds (resulting in a direct loss of eggs and young), or reduce their quality by deposition of increased amounts of fine sediments. Other effects that may result from sand and gravel mining include increased temperatures (from reduction in summer base flows and decreases in riparian vegetation), decreased nutrients (from loss of floodplain connection and riparian vegetation), and decreased food production (loss of invertebrates) (Spence et al. 1996).

Conservation Measures -- Sand and Gravel Mining:

Below are the types of measures that can be undertaken by the action agency on a site-specific basis to conserve salmon EFH in areas that have the potential to be affected by sand and gravel mining activities. Not all of these suggested measures are necessarily applicable to any one project or activity that may adversely affect salmon EFH. More specific or different measures based on the best and most current scientific information may be developed prior to, or during the EFH consultation process, and communicated to the appropriate agency. The options listed below represent a short menu of general types of conservation actions that can contribute to the protection and restoration of properly functioning salmon habitat. The following suggested measures are adapted from NMFS (1996) and OWRRI (1995).

18. Vessel Operations:

The discharge of contaminated ballast or bilge water and trash has the potential to adversely affect salmon EFH. Ship wakes can also cause increased bank erosion, increasing turbidity and sedimentation effects. Depending on the size of waves generated by ships, wash caused by ship wakes can result in the stranding of juvenile salmonids along the shoreline. Fish stranding, a function of fish size and swimming performance, tends to be a problem for smolts less than 60-70 mm and can be a significant source of juvenile mortality (Bauersfeld 1977).

Onshore, the discharge of solvents, grease, or paints from ship yard maintenance activities (see sections on "Waste Water...", "Oil Exploration..." and "Introduction of Nonnative Plants and Animals") also has the potential to adversely affect salmon EFH.

Conservation Measures -- Vessel Operations:

Below are the types of measures that can be undertaken by the action agency on a site-specific basis to conserve salmon EFH in areas that have the potential to be affected by vessel operations. Not all of these suggested measures are necessarily applicable to any one project or activity that may adversely affect salmon EFH. More specific or different measures based on the best and most current scientific information may be developed prior to, or during the EFH consultation process, and communicated to the appropriate agency. The options listed below represent a short menu of general types of conservation actions that can contribute to the protection and restoration of properly functioning salmon habitat. Also refer to sections on "Waste Water...", "Oil Exploration..." and "Introduction and Spread of Nonnative Species". The following suggested measures are adapted from Bauersfeld (1977), Cohen (1997), and EPA (1993).

19. Wastewater/Pollutant Discharge:

Water quality essential to salmon and their habitat can be altered when pollutants are introduced through surface runoff, through direct discharges of pollutants into the water, when deposited pollutants are resuspended (e.g., dredging), and when flow is altered (e.g., nitrogen supersaturation at dams).

Atmospheric discharges of pollutants from power plants or industrial facilities can deposit metals, complex hydrocarbons, and synthetic chemicals into salmon EFH. These pollutants can be carried directly into salmon EFH or can settle on land and be carried into the water through rain run-off or snow-melt.

Similarly, wastewater or pollutants can be directly or indirectly discharged into ocean, estuarine, or fresh water environments. Examples of direct input of pollutants include the wastewater discharges of municipal sewage or stormwater treatment plants, power generating stations, industrial facilities (e.g., pulp mills, desalination plants, fish processing facilities), spills or seepage from oil and gas platforms, marine fueling facilities, hatcheries, boats (e.g., sewage, bilge water), the dumping of dredged materials or sewage sludge, or even from vessel maintenance, if it occurs over the water. These sources can result in the introduction of heavy metals, nutrients, hydrocarbons, synthetic compounds, organic materials, salt, warm water, disease organisms, or other pollutants into the environment.

Indirect sources of water pollution in salmon habitat results from run-off from streets, yards, construction sites, gravel or rock crushing operations, or agricultural and forestry lands. This run-off can carry oil and other hydrocarbons, lead and other heavy metals, pesticides, herbicides, sediment, nutrients, bacteria and pathogens into salmon habitat. Water pollution can also result from the resuspension of buried contaminated sediments (e.g., from dredging operations). (See sections on "Dredging....."; "Grazing"; "Mineral Mining"; "Agriculture"; "Construction/Urbanization"; and ";Forestry").

The introduction of pollutants into EFH can create both lethal and sublethal habitat conditions to salmon and their prey. For example, fish kills may result from a pesticide run-off event, high water temperatures, or when algae blooms caused by excess nutrients deplete the water of oxygen.

Pollutant and water quality impacts to EFH can also have more chronic effects detrimental to fish survival. Contaminants can be assimilated into fish tissues by absorption across the gills or through bio-accumulation as a result of consuming contaminated prey. Pollutants either suspended in the water column (e.g., nitrogen, contaminants, fine sediments) or settled on the bottom (through food chain effects) can affect salmon. Many heavy metals and persistent organic compounds such as pesticides and polychlorinated biphenyls (PCBs) tend to adhere to solid particles. As the particles are deposited these compounds or their degradation products (which may be equally or more toxic than the parent compounds) can bioaccumulate in benthic organisms at much higher concentrations than in the surrounding waters (OTSMS 1987, Stein et al. 1995).

Conservation Measures -- Wastewater/Pollutant Discharge:

Numerous federal and state programs have been established to improve and protect water quality. One of the most important programs relating to salmon EFH is the Clean Water Act’s Section 319 program administered by the Environmental Protection Agency. Under this section, states are required to submit to EPA for approval of an assessment of waters within the state that, without additional action to control nonpoint sources of pollution, cannot be expected to attain or maintain applicable water quality standards. In addition, states are to submit to EPA their management programs that identify measures to reduce pollutant loadings, including best management practices and monitoring programs. It is therefore critical that actions aimed at improving EFH water quality, especially in streams and rivers, are taken in concert with state agencies (e.g., Oregon Department of Environmental Quality, Washington Department of Ecology; California Water Resources Control Board; Idaho Department of Health and Welfare) responsible for water quality management.

Some pollutant discharges are regulated through discharge permits which set effluent discharge limitations and/or specify operation procedures, performance standards, or best management practices. Additional effort to improve water quality is also being fostered by states under the guidance of the Coastal Zone Management Reauthorization Act. These efforts rely on the implementation of best management practices to control polluted run-off (EPA 1993). Although not yet a consistently applied mechanism to improve water quality, vegetated buffers along streams have been shown to be effective in providing such functions as sediment trapping, removal of nutrients and metals, moderation of water temperatures, increasing stream and channel stability and allowing recruitment of woody debris.

Below are the types of measures that can be undertaken by the action agency on a site-specific basis to conserve salmon EFH in areas that have the potential to be affected by both point and nonpoint sources of pollution. Not all of these suggested measures are necessarily applicable to any one project or activity that may adversely affect salmon EFH. More specific or different measures based on the best and most current scientific information may be developed prior to, or during the EFH consultation process, and communicated to the appropriate agency. The options listed below represent a short menu of general types of conservation actions that can contribute to the protection and restoration of properly functioning salmon habitat. The following suggested measures are adapted from Gauvin (1997), WFWC (1997), OCSRI (1997), NMFS (1997b), RAC (1997) and EPA (1993).

20. Wetland & Floodplain Alteration:

Many river valleys in the west were once marshy and well vegetated, filled with mazes of floodplain sloughs, beaver ponds, and wetlands. Salmon evolved within these systems. Juvenile salmon, especially coho, can spend large portions of their fresh water residence rearing and over-wintering in floodplain environments and riverine wetlands. Salmon survival and growth are often better in floodplain channels, oxbow lakes, and other river-adjacent waters than in mainstream systems (NRC 1996). Additionally wetlands provide other ecosystem functions important to salmonids such as regulation of stream flow, stormwater storage and filtration, and often provide key habitat for beavers (that in turn may provide instream habitat benefits to coho from their active and continual placement of wood in streams) (OCSRI 1997). Floodplains (even those that are not wetlands) also help store water, filter nutrients, and cycle nutrients into the aquatic ecosystem.

Wetlands and side channels throughout the region have been converted through diking, draining and filling to create agricultural fields, livestock pasture, areas for ports, cities, and industrial lands. Wetlands were further altered to improve navigation along rivers. These changes have transformed the complex river valley habitat, with many backwater areas, into a simplified drainage systems most of whose flow is confined to the mainstream (Sedell and Luchessa 1982). As a result of these alterations, these areas became less capable of absorbing flood waters. Further habitat alteration often occurs as flood control projects are then undertaken. These projects include such things as water storage dams, dredging to increase channel capacity, or the building of dikes and levees to prevent rivers from over-topping their banks.

The construction of dikes, levees and roads in the floodplain have further effects on salmon habitat. These structures prevent the connections between the rivers and floodplain, depriving the rivers of supplies of large woody debris as well as decreasing the input of fine organic matter and dissolved nutrients which support the food web for salmon (NRC 1996). These structures also deprive the river of a place to deposit sediment, so more sediment moves downstream, causing stream channel aggradation, the scouring of spawning redds, and estuary filling.

Conservation Measures -- Wetland & Floodplain Alteration:

Below are the types of measures that can be undertaken by the action agency on a site-specific basis to conserve salmon EFH in areas that have the potential to be affected by wetland and floodplain alterations. Not all of these suggested measures are necessarily applicable to any one project or activity that may adversely affect salmon EFH. More specific or different measures based on the best and most current scientific information may be developed prior to, or during the EFH consultation process, and communicated to the appropriate agency. The options listed below represent a short menu of general types of conservation actions that can contribute to the protection and restoration of properly functioning salmon habitat. The following suggested measures are adapted from NMFS (1997b), Metro (1997) and Streif (1996).

In addition to applicable measures described in the estuarine alteration section, the following general measures may apply:

21. Woody Debris/Structure Removal From Rivers and Estuaries:

The functional importance of large woody debris and structure (e.g.,, large rocks and boulders) has been well documented in stream environments. Large woody debris is also important in riverine and estuarine environments.

Large woody debris provides structure to stream channels which promotes habitat complexity that allows multiple salmon species to coexist. For example, depending on the size of the woody debris and the stream, the debris may create plunge, lateral, scour and backwater pools, short riffles, undercut banks, side channels and backwaters, and create different water depths (Spence et al. 1996). Large woody debris in the stream also helps retain gravel for spawning habitat, provides long term nutrient storage and substrate for aquatic invertebrates that are salmon prey, and provides refuge for fish and prey during high and low-flow periods (Spence et al. 1996). Additionally, large woody debris provides cover for salmon, influences water flow, allows for the storage and transport of sediment and fine organic debris (as well as salmon carcasses), and influences the physical structure and stability of important habitat features such as pools (Ralph et al. 1994, Spence et al. 1996).

The pools that are associated with large woody debris are preferred habitats for various age classes of juvenile coho salmon (as well as cutthroat trout and steelhead) (Bisson et al. 1987). Additionally, pools are important as resting and holding habitat for upstream migrating adult salmon and are necessary for attaining the swimming speed needed to jump obstacles (Spence et al. 1996).

The ecological functions of large woody debris in lower river and estuarine environments is similar, but has not been as widely acknowledged. Large woody debris in the tidal river segment of coastal stream systems create riffles and provide shelter from predators for salmonids and other aquatic organisms. The woody debris can also affect local water flow by creating turbulence and thereby affecting the sedimentation pattern and the formation of gravel bars or mud banks. Large woody debris influences the estuarine portion of the ecosystem, mainly through their physical properties as large masses and by creating substrate in an environment where the bottom consists mainly of fine sediment (Maser and Sedell 1994). Fallen trees that reach the upper and lower estuary system are degraded by various species of woodborers, providing important sources of nutrients for the detritus based food webs of the estuary. Downed trees also play roles in creating important habitat in salt marshes by catching sediment and organic material, elevating the general area of the ground around them. When these trees refloat during high tides, floods, or storm surges, the shallow depressions that remain in the marsh increase habitat diversity; at low tide, these depressions are filled with juvenile fishes (Gonor et al. 1988). The depletion of woody debris has diminished these channel formation, predator avoidance, and nutrient/prey functions. Additionally, the important structure that tree branches once provided in estuaries as spawning substrate for herring is lacking, resulting in overcrowding on the remaining spawning substrates (Phillips 1984).

The removal of large woody debris from streams, rivers, and estuaries is not encouraged, though it continues in attempts to control riverbank erosion or to protect structures (e.g., bridges). Additionally, recreational boaters, kayakers, and rafters may remove snags from rivers and lakes. This is done for reasons of aesthetics and safety, leaving popular white water rivers and many recreational lakes nearly devoid of snags (Gonor et al. 1988). Additionally, streams in urban and urbanizing areas are devoid of wood due in part to the removal of wood by river-side property owners for aesthetic reasons, concerns about flooding, and for firewood. Additionally, property owners cut trees along riparian areas and replace these areas with lawns, thus depriving the stream of a replacement supply of large wood (May et al.1997).

Removal of large rocks and boulders is also of concern since these structures also create hydrologic and stream channel complexity important to salmon.

Conservation Measures -- Woody Debris/Structure Removal From Rivers & Estuaries:

Below are the types of measures that can be undertaken by the action agency on a site-specific basis to conserve salmon EFH in areas that have the potential to be affected by the removal of large woody debris. Not all of these suggested measures are necessarily applicable to any one project or activity that may adversely affect salmon EFH. More specific or different measures based on the best and most current scientific information may be developed prior to, or during the EFH consultation process, and communicated to the appropriate agency. The options listed below represent a short menu of general types of conservation actions that can contribute to the protection and restoration of properly functioning salmon habitat.